首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
用TPSSTPSS密度泛函方法, Pu离子和H2O分子分别采用相对论有效原子实势(RECP)和6-31g基组, 研究了Pu(H2O)53+和Pu(H2O)54+ 团簇溶剂化和非溶剂化效应中的几何结构及紫外可见吸收光谱. 计算结果表明: 水溶剂环境对Pu(H2O)53+及Pu(H2O)54+ 团簇的几何结构影响都比较明显. NBO电荷分析表明水分子与钚离子之间没有直接的电荷转移. 所研究团簇的未配对电子都占据5f轨道. 在气相及水溶剂环境下, 所研究团簇的紫外可见吸收光谱存在较大差距. 主要的吸收峰大都源于f电子之间的跃迁.  相似文献   

2.
Gao  Jing  Tian  LiDe  Liu  YongQin  Gong  TongLiang 《科学通报(英文版)》2009,54(16):2758-2765
Given the potential use of stable isotope in the paleoclimate reconstruction from lacustrine records as well as in the local hydrology cycle, it is crucial to understand the processes of stable isotope evolution in catchment in the Tibetan Plateau region. Here we present a detailed study on the water oxygen isotope based on 2 years observation including precipitation, river water and lake water in the Yamzho Lake, south of the Tibetan Plateau. Temporal variation of local precipitation 5180 shows an apparent "monsoon cycle". In monsoon season, 5180 in waters is lower. In non-monsoon season, δ^18O in precipitation and lake water is higher and higher river δ^18O exists in spring, probably reflecting the effect of land surface evaporation, together with the higher δ^18O values in spring precipitation. It is also found that the surface lake water δ^18O varies seasonally and annually. The lower lake water δ^18O in the late summer is apparently related to the summer monsoon precipitation. The mean δ^18O value of lake water in 2007 is 1.2‰ higher than that in 2004, probably due to the less monsoon precipitation in summer of 2007, as can be confirmed from the precipitation data at the Langkazi meteorological data. It is also found that an obvious shift of vertical lake water δ^18O reflects the fast mixture of lake water. δ^18O values of lake water are over 10‰ higher than those of precipitation and river water in this region due to the evaporation fractionation. The modeled results show that the evaporation process of the lake water is sensitive to relative humidity, and the present lake water δ^18O reflects a relative humidity of 51% in the Yamzho Lake. It shows that the lake will take 30.5 years to reach present lake water δ^18O given a large shift in the input water δ^18O. The modeled results also reveal that surface lake water temperature and inflow δ^18O have slight effect on the isotopic balance process of lake water in the Yamzho Lake.  相似文献   

3.
Yao  TanDong  Zhou  Hang  Yang  XiaoXin 《科学通报(英文版)》2009,54(16):2724-2731
The δ^18O variation in precipitation acquired from 28 stations within the network of Tibetan Observation and Research Platform (TORP) is studied, with the focus on the altitude effect of δ^18O in river water during monsoon precipitation in an effort to understand the monsoon influence on isotopic composition in annual river water. It is found that δ^18O in precipitation on the Plateau is influenced by different moisture sources, with significant Indian monsoon influence on δ^18O composition in plateau precipitation and river water. The δ^18O of water bodies in the monsoon domain is generally more depleted than that in the westerly domain, suggesting gradual rainout of southwesterly borne marine moisture in the course of long-distance transportation and lifting over the Himalayas. The lapse rate of δ^18O in river water with altitude is the largest during monsoon precipitation, due to the increased temperature vertical gradient over the southern Plateau region controlled by monsoon circulation. The combination of δ^18O in river water in monsoon (wet) and non-monsoon (dry) seasons shows a larger lapse rate than that in non-monsoon (dry) season alone. As the altitude effect of δ^18O in precipitation and river water on the Tibetan Plateau results from the combined effect of monsoon moisture supply and westerly moisture supply, the δ^18O composition and its altitude effect on the Plateau during monsoon seasons should be considered in the reconstruction of paleoelevation of the Tibetan Plateau.  相似文献   

4.
5.
We investigated the moisture origin and contribution of different water sources to surface runoff entering the headwaters of the Heihe River basin on the basis of NECP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) re-analysis data and variations in the stable hydrogen and oxygen isotope ratios (?? D and ?? 18O) of precipitation, spring, river, and melt water. The similar seasonality in precipitation ?? 18O at different sites reveals the same moisture origin for water entering the headwaters of the Heihe River basin. The similarity in the seasonality of ?? 18O and d-excess for precipitation at Yeniugou and Urumchi, which showed more positive ?? 18O and lower d-excess values in summer and more negative ?? 18O and higher d-excess values in winter, indicates a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter. Higher d-excess values throughout the year for Yeniugou suggest that in arid inland areas of northwestern China, water is intensively recycled. Temporal changes in ?? 18O, ??D, and d-excess reveal distinct contributions of different bodies of water to surface runoff. For example, there were similar trends for ?? D, ?? 18O, and d-excess of precipitation and river water from June to September, similar ?? 18O trends for river and spring water from December to February, and similar trends for precipitation and runoff volumes. However, there were significant differences in ?? 18O between melt water and river water in September. Our results show that the recharge of surface runoff by precipitation occurred mainly from June to mid-September, whereas the supply of surface runoff in winter was from base flow (as spring water), mostly with a lower runoff amount.  相似文献   

6.
Atmospheric water vapor samples were collected in the Nagqu River Basin in the middle of Tibetan Plateau between August and October in 2004. Results show that there exist some fluctuations of the δ^18O of atmospheric water vapor, especially before and after the monsoon's end.Moreover, the variety trend of the δ^18O of atmospheric water vapor inverse correlates with that of dew point. Precipitation events make an important effect upon the variation of δ^18O of atmospheric water vapor. During the whole sampling period, the δ^18O values of atmospheric water vapor are low while precipitation events occurred. The moisture origins w also contribute to the variation of δ^18O of atmospheric water vapor. The oceanic moisture transported by the southwest monsoon results in lower δ^18O of atmospheric water vapor in the Nagqu River Basin. Compared with the influence of the oceanic moisture, the δ^18O values, however, appear high resuiting from the effect of the continental air mass in this region.  相似文献   

7.
Yang  XiaoXin  Xu  BaiQing  Yang  Wei  Qu  DongMei  Lin  Ping-Nan 《科学通报(英文版)》2009,54(16):2742-2750
Seasonal δ^18O variation in water on the southeast Tibetan Plateau has been studied, showing the consistent variation pattern of δ^18O with altitude indicative of relevant atmospheric circulation processes. Study shows a similar variation pattern of fixed-site river water δ^18O with that of the precipitation δ^18O in southeast Tibet. δ^18O in regional rivers in southeast Tibet demonstrates a gradual depletion with increasing altitude, though the rates vary seasonally. The most depleted river ^18O occurs during the monsoon period, with the lowest δ^18O/altitude lapse rate. The river ^18O during the westerly period is also depleted, together with low δ^18O/altitude lapse rate. The pre-monsoon rivers witness the most enriched ^18O with least significant correlation coefficient with the linear regression, whilst the postmonsoon rivers witness the largest δ^18O/altitude lapse rate. Different coherence of seasonal δ^18O variation with the altitude effect is attributed to different moisture supplies. Though sampling numbers vary with seasons, the δ^18O-H linear correlation coefficients all reach the 0.05 confidence level, thus witnessing the variation features of δ^18O in seasonal river water due to the influence of atmospheric general circulation and land surface processes revealed from the altitudinal lapse rates.  相似文献   

8.
Oxygen and hydrogen isotopic compositions have been determined of three coexistent mineral triplets of alkali feldspar, quartz, arfvedsonite of 11 samples collected from the Tasigake alkali granite pluton, Ulungur River region, northern Xinjiang. Isotopic exchange with meteoric water during subsolidus cooling caused strong18O-D depletion and the remarkable nonequilibrium18O/16O relation between coexistent minerals.18O/16O exchange kinetic effects of the three minerals are simultaneously and consistently modelled. Exsolution and microtextural reorganization of alkali feldspar, and infiltration of water have been mutually facilitated by each other. Shallow intrusion, and circulation of meteoric water throughout the pluton cool it effectively. As a result, the “heat engine” is rapidly extinguished, and the nonequilibrium18O/16O relation is frosen.  相似文献   

9.
In this study, we simulated and analyzed the monthly variations of stable water isotopes in different reservoirs at Manaus, Brazil, using the Community Land Model (CLM) that incorporates stable isotopic effects as a diagnostic tool for understanding stable water isotopic processes, filling the observational data gaps and predicting hydrometeorological processes. The simulation results show that the δ^18O values in precipitation, vapor and surface runoff have distinct seasonality with the marked negative correlations with corresponding water amount. Compared with the survey results by the International Atomic Energy Agency (IAEA) in co-operation with the World Meteorological Organization (WMO), the simulations by CLM reveal the similar temporal distributions of the δ^18O in precipitation. Moreover, the simulated amount effect between monthly δ^18O and monthly precipitation amount, and MWL (meteoric water line) are all close to the measured values. However, the simulated seasonal difference in the δ^18O in precipitation is distinctly smaller than observed one, and the simulated temporal distribution of the δ^18O in precipitation displays the ideal bimodal seasonality rather than the observed single one. These mismatches are possibly related to the simulation capacity and the veracity in forcing data.  相似文献   

10.
11.
Liu  JianRong  Song  XianFang  Yuan  GuoFu  Sun  XiaoMin  Liu  Xin  Wang  ShiQin 《科学通报(英文版)》2010,55(2):200-211
Monsoon circulation is an important carrier of water vapor transport, and it impacts the precipitation of the monsoonal regions through the constraints and controls of large-scale water vapor transport and distributions as well as the water vapor balance. An overall research on stable Hydrogen and Oxygen isotopes in precipitation over Eastern Monsoon China could benefit a compre-hensive understanding of the monsoonal precipitation mechanism. Seventeen field stations of the Chinese Network of Isotopes in Precipitation (CHNIP) have been selected to collect monthly composite precipitation samples during the years 2005―2006. Components of δD and δ18O have been analyzed to achieve the spatiotemporal distributions. The established Local Meteoric Water Line δD=7.46 δ18O+0.90 based on the 274 obtained monthly samples could be treated as isotope input functions across the region, due to basically reflecting the specific regional meteorological conditions over Eastern Monsoon China. The δ-value de-pleted from coastal to inner area. In Southern China and Northeastern China there were typical periodic patterns of δ188O. Differ-ent dominant affecting metrological factors have been raised with different regions. From south to north, the temperature effect of δ1818O enhanced, while the amount effect changed from existing at an all-year-scale in Southern China to being only remarkable during the main rainy seasons in North China and Northeastern China. Main geographical controls varied from altitude in South-ern China and North China to latitude in Northeastern China. Furthermore, δ18O had an implication of advance and retreat of the monsoon as well as rainfall belt transfer δ18O was also a tracer for the movement path of typhoon and tropical storms.  相似文献   

12.
Relative humidity is an important factor in water and water vapor feedback cycles.In this study,we established a 222-year annual tree-ring δ~(18)O chronology for Siberian larch(Larix sibirica Ldb.)from the Altay Mountains in northwestern China.Climate response analyses revealed that the relative humidity was the primary factor limiting tree-ring δ~(18)O fractionation.Based on our analysis,tree-ring δ~(18)O can be used to reconstruct the July–August relative humidity based on both a reasonable mechanism of tree-ring δ~(18)O fractionation and a statistically significant regression model.We used this model to reconstruct variations in the July–August relative humidity,and the model explained 47.4% of the total variation in the measured relative humidity data from 1961 to 2011.The relative humidity in the study area increased from 1900 to the 1990s and decreased thereafter.Two regime-shift dry periods were detected during the study period(one from 1817 to 1830 and the other from 2004 to 2011).  相似文献   

13.
14.
Based on the data of δ^18O in precipitation during the period of April 2006 through May 2007 in the upper catchment of the main stream of the Heihe River in the Qilian Mountains, we found that there existed an evident altitude effect on δ^18O in precipitation, and the δ^18O-altitude gradient was -0.18‰/100 m. When δ^18O in river water at the outlet of the mountainous drainage area of the main stream of the Heihe River was combined with the δ^18O-altitude relation, it was realized that the mountainous runoff was generated mostly at high altitudes. Using two component models, we revealed that 80.2% of the annual total mountainous runoff amount was generated at the alpine permafrost-snow-ice zone with an altitude of above 3600 m a.s.I.  相似文献   

15.
High spinning speed1H magic-angle spinning nuclear magnetic resonance (1H MAS NMR) was used to detect surface hydroxyl groups of diatomite, which include isolated hydroxyl groups and hydrogen-bonded hydroxyl groups, and water adsorbed on diatomite surface that include pore water and hydrogen-bonded water. The corresponding proton chemical shifts of above species are ca. 2.0, 6.0–7.1, 4.9 and 3.0 respectively. Accompanied by thermal treatment temperature ascending, the pore water and hydrogen-bonded water are desorbed successively. As a result, the relative intensities of the peaks assigned to protons of isolated hydroxyl groups and hydrogen-bonded hydroxyl groups increase gradually and reach their maxima at 1000°C. After 1100°C calcination, the hydroxyl groups that classified to strongly hydrogen-bonded ones and the isolated hydroxyl groups condense basically. But some weakly hydrogen-bonded hydroxyl groups may still persist in the micropores.  相似文献   

16.
根据地表水体样品、地下水样品的同位素测试结果,绘制δD δ18O关系图、δ18O H关系图,从而对东北平原西部山前台地区的地下水补迳排关系进行分析·获得该地区雨水线方程δD=7 1781δ18O-8 1151;高程效应关系式δ18O=-0 0049H-8 209;同时认为大兴安岭山区是该区地下水的补给区,补给源是大气降水,区内地下水循环迟缓,主要为1991年以来大气降水补给;地下水形成年龄在3 26~10 6年之间;地下水形成时年平均气温略低于现代年平均气温·  相似文献   

17.
Investigation of temporal variations in the stable δ^18O and δD isotopes from Kathmandu's precipitation events shows that the relatively enriched δ^18O and δD values in the winter (the dry season, dominated by the westerlies) were positively correlated with temperature, indicating a temperature effect controlling the changes of δ^18O and δD. However, the δ^18O and δD values were depleted in the summer (the wet season, dominated by the Indian monsoon), which were negatively correlated with precipitation amount, indicating an amount effect. In addition, the comparison of stable isotopes in precipitation from Kathmandu and Mawlong (near the Bay of Bengal) shows that the overall trends of δ^18O and δD values at Kathmandu generally approximate those at Mawlong. However, there remain many differences between the details of the isotopic changes at Kathmandu versus those at Mawlong. Compared with those at Mawlong, the further rainout effect and the more intense lift effect of the oceanic moisture by the high mountains resulted in the more depleted δ^18O and δD values in summer precipitation at Kathmandu. A deuterium excess and the local meteoric water lines reveal that evaporation at Kathmandu exceeds that at Mawlong. The data also show that the Indian monsoon activities at Mawlong are more intense than those at Kathmandu.  相似文献   

18.
Wen  Rong  Tian  LiDe  Weng  YongBiao  Liu  ZhongFang  Zhao  ZhongPing 《科学通报(英文版)》2012,57(14):1693-1698
The lapse rate of water isotopes is used in the study of the hydrologic cycle as well as in the estimation of uplift of the Tibetan Plateau.The greater elevation contrast in the Southern Himalayas allows for a detailed discussion about this lapse rate.We analyze variations of 18δO in precipitation and river water between 1320 m and 6700 m elevations in the Southern Himalayas,and calculate the specific lapse rate of water 18δO.The results show that the multi-year average lapse rate in precipitation over this region is 0.15‰/100 m.The one-year average lapse rate is 0.17‰/100 m from three sites along the Southern Himalayas.The two results agree,but are much lower than the global average of 0.28‰/100 m.This work also shows that there is a difference in precipitation 18δO lapse rate between the monsoon and non-monsoon seasons.The calculated precipitation lapse rate is much lower than that in surface water.  相似文献   

19.
The molecule r(GCG)d(TATACGC) is self-complementary and forms two DNA--RNA hybrid segments surrounding a central region of double helical DNA; its molecular structure has been solved by X-ray analysis. All three parts of the molecule adopt a conformation which is close to that seen in the 11-fold RNA double helix. The conformation of the ribonucleotides is partly determined by water molecules bridging between the ribose O2' hydroxyl group and cytosine O2. The hybrid-DNA duplex junction contains no structural discontinuities. However, the central DNA TATA sequence has some structural irregularities.  相似文献   

20.
According to systemically monitoring results of oxygen (hydrogen) isotope compositions of precipitation, soil waters, soil CO2, cave drip waters and their corresponding speleothems in Liangfeng Cave (LFC) in Guizhou Province, Southwest China, it is found that local precipitation is the main source of soil waters and drip waters, and that the amplitudes of those δ18O values of three waters (precipitation, soil water and drip water) decrease in turn in the observed year, which are 0‰ to -10‰, -2‰ to -9‰ and -6‰ to -8‰, respectively. Moreover, the δ18O values for three waters show a roughly simultaneous variation, namely, that those values are lighter in the rainy seasons, weightier in the dry seasons, and that the average δ18O value of drip waters is about 0.3‰ weightier than that of precipitation, which is modified by surface evaporation processes. We also find that oxygen isotope equilibrium is reached or neared in the formation processes of speleothems in LFC system, and that it is feasible to reconstruct paleotemperature and paleoprecipitation by using δ18O values of speleothems. However, it should be noted that surface evaporation would affect the oxygen isotope values in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号