首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
R134a在水平三维微肋管内的沸腾换热   总被引:3,自引:0,他引:3  
实验研究了R134a在水平三维微肋管内的沸腾换热。实验段有效长度3.0m,内径12mm,工质量量流率100-277kg/(m^2.s),热负荷10-20kW/m^2,饱和压力0.54-0.65MPa,实验考察了质量流率,质量干度和饱和压力对换热系数的影响。  相似文献   

2.
R417A在水平光滑管和内螺纹管中的流动沸腾换热   总被引:3,自引:1,他引:3  
对非共沸混合制冷剂R417A在外径为9.52 mm的水平光滑管和2种不同几何参数的内螺纹管中的流动沸腾换热进行实验研究,分析讨论了制冷剂质量流速、热流密度、干度、强化管参数对换热系数的影响规律和影响机理.实验结果表明:换热系数随着质量流速的增大而增大.在以对流蒸发占优势的换热区,热流密度对换热系数的影响较小;换热系数随着干度的增大先呈现出增大趋势,增至高峰值后又迅速下降,高峰值随热流密度的增大和质量流速的减小向干度较大的方向移动;内螺纹管能有效强化制冷剂的流动沸腾换热,R417A在2种内螺纹管中的换热系数分别比在光滑管中高出130%~210%和150%~270%.  相似文献   

3.
基于作者以前研究得到的三元非共沸混合制冷剂R417A在水平光滑管和2种不同几何参数的内螺纹管中流动沸腾换热的实验结果,应用R417A在光滑管内的实验数据对Kattan模型进行修正,并通过在修正-Kattan模型中引入强化因子,发展了一个混合制冷剂在微肋管内流动沸腾的换热关系式.计算结果与实验结果比较表明:该关系式能很好地预测混合制冷剂在不同的内螺纹管中流动沸腾时的换热系数,当干度小于80%时,预测偏差基本集中在±30%的范围之内.  相似文献   

4.
三维微肋管内沸腾两相流型及其换热   总被引:3,自引:0,他引:3  
以R134a为工质在作者研制的三维微肋管内进行了水平流动沸腾换热实验研究,通过可视化措施对流型及其转换进行了观测,结果表明,在Tailer-Dukler流型图上,三维微肋管内沸腾流型的分界线与光滑管有所不同,其中间歇流与环状流的判据由Xtt等于1.6减小到Xtt等于0.42,而波状流向环状流转变的Fr数有所增加;而在中等质量流速下环状流与局部蒸干区的转变主要受热流密度的影响。同时,对三维微肋管内沸腾换热特点进行了讨论,并对得到的实验数据建立了分区换热关联式,这些不同流型下的换热关联式的计算值能较好地同实验数据相吻合。  相似文献   

5.
水平新型微肋管内流动冷凝换热及流阻特性   总被引:1,自引:0,他引:1  
为研究微肋管结构尺寸及工况等对管内流动冷凝性能的影响,采用R22为工质对4种结构的微肋管和1根Ф9.52mm光管进行了实验.根据实验结果分析了质量流速、微肋结构尺寸和管径等对冷凝换热性能的影响.实验结果表明,两根Ф9.52mm微肋管的换热系数分别比光管提高了90%和120%,而其内表面积只比光管增加了40%和70%.  相似文献   

6.
本文对R12在水平管内流动沸腾换热特性作了实验研究。实验结果表明,管内流动沸腾换热与单相对流换热一样,存在热进口效应,国外早期的实验数据由于未能考虑热进口效应而偏大。实验结果还表明,水平流动沸腾周向不均匀换热主要受流动结构影响;截面平均换热系数则与质量流速、热流密度、质量干度和蒸发压力密切相关。分析实验数据证实,流动沸腾换热是由气泡产生而引起的流动充分发展核态沸腾和双相对流蒸发两部分组成的。本文的实验数据与国外已有的换热关系式能较好吻合。  相似文献   

7.
研制了一种新型三维内微肋管。在工质蒸汽进口压力为147、186、226和265kPa下,在凝结液质量流率为33~153kg/(m~2·s)范围内,通过对3种不同微肋尺寸的三维内微肋管的实验,得到了R11在水平管内的凝结换热性能。  相似文献   

8.
水蒸汽在水平二维微肋管内的凝结换热   总被引:1,自引:0,他引:1  
探讨了微肋高度对水平二维微肋管内凝结换热和流动阻力的影响.采用水蒸汽为凝结介质,进行了三种不同肋高度的管内凝结换热实验.结果表明,二维微肋管内凝结的平均换热系数α随肋高的增加明显增大.和光管比较,α增加28%~210%,这时阻力的增加仅为4%~53%.  相似文献   

9.
研究R22和R1234ze(E)在胀管前、后外径分别为5.10和5.26 mm微肋管内的截面尺寸变化、凝结换热和摩擦压降特性。分析质量流速、干度及胀管对凝结换热系数和摩擦压力梯度的影响。采用关联式对试验结果进行预测,并对关联式的预测性能进行分析。结果表明:胀管后微肋管的结构会发生一定程度的变形;凝结换热系数和摩擦压力梯度均随质量流速和干度增大而增大;质量流速为100 kg/(m^2·s)时,胀管会削弱微肋管的凝结换热性能;质量流速为200和300 kg/(m^2·s)时,胀管对换热系数的影响不明显;而质量流速为100~300 kg/(m^2·s)时,胀管对摩擦压力梯度的影响不显著。  相似文献   

10.
对R22与R417A在水平光滑管和2种不同几何参数的内螺纹管中的流动沸腾换热进行实验研究,分析比较了2种制冷剂流动沸腾换热性能的差异。实验结果表明:R417A的换热性能与R22相比有一定程度的降低,其降低程度因质量流速、干度及换热管参数的不同而异,质量流速越小,R417A换热性能的降低越严重;在x<0.6的较低干度区内,光滑管中R417A的换热系数比R22约降低了20%~40%,内螺纹管中的降低幅度更大,几乎达到50%~60%,在x>0.6的较高干度区内,不同换热管中R417A换热系数的降低幅度较为相近;光滑管中R417A换热系数的降低幅度受干度影响较大,且随干度的增加而增大,内螺纹管中的降低幅度受干度影响较小;强化管对换热的强化效果越好,R417A换热系数的降低幅度就越大。  相似文献   

11.
针对中国北方冬季气温偏低的特点,设计了相变蓄热蒸发型空气源热泵。相变蓄热蒸发型空气源热泵,利用相变技术,可以有效地解决中国北方低温时的供暖问题。以相变蓄热蒸发型空气源热泵为研究对象,在人工环境模拟室中模拟不同的环境温度,分别使用R417A和R22进行实验。实验数据表明,R417A替代R22时,系统无需更换润滑油,各工况下系统运行稳定,R417A的排气温度和排气压力均低于R22,有利于系统的安全运行。R417A的制热量和COP均小于R22。可见R417A可以替代R22作为相变蓄热蒸发型空气源热泵的制冷剂,但对于新建热泵机组,要达到原有供热效果需要增加蒸发器和冷凝器的换热面积。  相似文献   

12.
利用计算流体力学和数值传热学的方法,采用非一致网格,应用Fluent软件对3种型号微肋管管内的单相流动与传热性能进行了三维数值模拟计算和理论分析,研究了管内流体的雷诺数及管子几何尺寸对其流动与传热性能的影响,其计算结果与实验结果基本吻合.结果表明:当10000〈Re〈120000时,与圆管相比,微肋管的努塞尔数分别达到了光滑圆管的1.88、2.08和2.48倍,而阻力系数为光滑圆管的1.60、1.68和1.72倍.  相似文献   

13.
以微型Capstone C30燃气轮机排放的烟气余热为热源,研究涡节结构强化管、酒窝结构强化管和光管管内沸腾换热特性。实验结果表明:涡节型结构强化传热管管内沸腾换热系数约为光管的1.6~2.1倍,管外对流传热系数约为光管的1.3~1.5倍,总传热系数约为光管的1.4~1.5倍;酒窝型强化传热管管内沸腾换热系数约为光管的2.1~2.5倍,管外对流传热系数约为光管的1.8~2.0倍,总传热系数约为光管的1.9~2.1倍。分析了涡节型强化传热管和酒窝型强化传热管较光管传热性能好的原因。  相似文献   

14.
为了研究制冷剂R410A在5 mm内螺纹铜管内的沸腾换热及压降特性,以磁驱泵提供循环动力、均匀缠绕在测试段上的电加热丝提供热量以及冷水机组提供循环冷量的方式搭建了测试实验台,并对R410A在5 mm内螺纹管内的流动沸腾换热系数及压降进行了测试.分析讨论了不同蒸发温度下,制冷剂质量流量密度和管壁热流密度对管内制冷剂流动沸腾换热系数以及压降特性的影响.研究结果表明:5mm内螺纹管内R410A的流动沸腾换热系数分别在质量流量密度位于191.28和344.3kg/(m2·s)处达到峰值;其流动沸腾换热系数随着管壁热流密度增大最初呈现增大的趋势,在热流密度30 kW/m2后逐渐平稳;而R410A在5 mm内螺纹管内的压降均随质量流量密度和管壁热流密度的增大而增大,其中压降和管壁热流密度的关系呈较为明显的线性变化.  相似文献   

15.
基于换热成本比的R410A风冷式冷凝器优化   总被引:1,自引:1,他引:0  
在对R410A空调用风冷式冷凝器进行实验研究的基础上,以换热量成本比为优化目标,分析了换热器结构参数变化对冷凝器性能的影响,进行了基于稳态分布参数模型的换热器仿真计算.通过比较,得出冷凝器换热量和传热系数随换热器的结构参数变化的情况,给出了冷凝器在一定运行条件下的单变量和多变量优化结果.研究表明,换热成本比随翅片厚度、翅片间距和管内径的减小而增大.  相似文献   

16.
对HFC134a和CFC12水平管内流动沸腾换热进行了实验研究.在实验工况范围内,HFC134a比CFC12的沸腾换热系数高32%~43%;流量对HFC134a与CFC12水平管内流动沸腾换热系数之比的影响较大,干度和热流密度对其影响相对较小  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号