首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究地震作用下高铁桥梁挡块与垫石间的横向碰撞效应,基于ANSYS软件建立高铁简支-连续组合桥梁(2×32 m简支梁+(48+80+48) m连续梁+2×32 m简支梁)横向地震碰撞杆系有限元模型,该模型考虑轨道系统(CRTSⅡ型)约束作用、上部结构与垫石间偏心距、挡块材料非线性、支座非线性和墩柱弹塑性的影响。采用非线性地震反应时程分析方法,讨论轨道系统约束作用、横向限位挡块和挡块-垫石间距等因素对桥梁结构横向地震碰撞效应的影响,并优化连续梁桥墩挡块间隙,探究橡胶缓冲装置的减碰效果。研究结果表明:轨道系统约束作用会改变桥梁结构的动力特性与地震响应,放大墩底剪力横向分配的不均匀性;在强震作用下,挡块横向限位效果较明显;当连续梁桥墩挡块-垫石间距为2~3 cm时,横向地震响应峰值均较小,适当增大中墩挡块-垫石间距效果更佳;橡胶缓冲装置会降低连续梁桥墩梁横向相对位移峰值和挡块碰撞力,且减震效果与橡胶厚度及布设方式有关。  相似文献   

2.
为研究桥梁结构在空间多点地震激励下的碰撞响应,采用LS-DYNA建立了两跨简支梁桥三维精细化有限元模型,考虑了相邻桥跨之间面-面碰撞及偏心碰撞效应,计入了板式橡胶支座系统的非线性、钢筋混凝土在碰撞荷载作用下的材料非线性和应变率效应,详细分析了空间多点地震下桥梁上部结构的碰撞响应,研究了双向多点地震激励及局部场地效应对碰撞响应的影响。研究结果表明,碰撞会导致伸缩缝处桥梁上部结构的局部破坏;双向多点地震激励引起的桥梁偏心碰撞响应导致碰撞次数增加,但减小了碰撞力;局部场地效应对桥梁上部结构碰撞响应影响较大,基础场地条件越差,上部结构碰撞响应越大,碰撞引起的梁端局部破坏越严重。  相似文献   

3.
为研究摩擦摆支座(FPB)对地震下高速列车-简支梁桥耦合系统的减隔震作用,基于ANSYS和SIMPACK平台,建立了高速列车-多跨简支梁桥耦合系统的三维有限元模型.模型中采用104~#力元模拟FPB,将轨道不平顺和地震力作为耦合系统的激励,开展了FPB对地震荷载下车-简支梁桥耦合系统的减隔震研究.结果表明,在El Centro地震波作用下,车-桥系统的动力响应随着车速、地震强度、墩高度的增大而增大.地震强度小于0.12g时,FPB能减小车-桥系统除墩顶横向加速度以外的其他动力响应,车速越大、墩身越高, FPB的减振效果越显著;地震强度大于0.12g时,FPB会增大车桥系统的动力响应.建议在高速铁路简支梁桥减隔震设计中,墩高不宜超过16 m,摩擦摆支座的参数应根据具体桥梁进行选择.  相似文献   

4.
为了降低桥梁在地震作用下梁体与抗震挡块间的碰撞效应,设计了一种新型滑移型抗震挡块.该挡块中设置有一人为薄弱层,且挡块顶部有一个外突起.地震时梁体先与外突起发生碰撞,当撞击达到一定的强度时,挡块在薄弱层处发生滑动,梁体继而与滑动面以下的挡块发生二次碰撞.采用接触单元法建立桥梁横向碰撞分析模型,并利用SAP2000建立一连续梁桥,然后采用非线性时程分析法对比分析了新型挡块和普通挡块的抗震性能.结果表明,新型挡块的碰撞撞击力明显小于普通挡块,其原因在于新型挡块通过滑移耗能降低了地震反应,而且它与主梁发生的2次碰撞可分散了撞击力,降低了横向碰撞引起的最大撞击力.  相似文献   

5.
为了观察不同高宽比隔震效果的变化规律,建立4组框架结构模型,高宽比分别为1.0,2.0,3.0,4.0,分别输入不同加速度峰值的地震波,在砂-橡胶粒隔震垫层上进行振动台试验。试验结果表明:随高宽比比值的增大,隔震结构加速度响应随之增大,隔震效果呈降低的趋势;当地震波的加速度峰值较小时,砂-橡胶粒垫层的耗能减震能力不够明显,随着地震作用的增强,其隔震效果明显改善。本次试验反映了高宽比因素对结构隔震效应的影响;同时证明了在大震激励下,砂-橡胶粒垫层具有较好的耗能减震能力,为下一步在工程上的应用提供了试验依据。  相似文献   

6.
为解决板式橡胶支座连续梁桥在强震作用下可能发生支座滑动进而产生桥梁碰撞、甚至落梁的问题,基于ANSYS平台建立了某板式橡胶支座连续梁桥的有限元模型,进行地震反应时程分析,研究了地震动峰值加速度(PGA)与峰值速度(PGV)的比值(fg)对桥梁板式橡胶支座滑动效应的影响,并给出了相对不利地震动输入方式.在相对不利地震动输入下,引入拉索减震支座进行减震研究,并对该支座的拉索刚度和初始间隙进行参数敏感性分析.结果表明,fg在一定程度上能够表征地震动频谱特性,板式橡胶支座的滑动能力与支座位移随fg的减小而增大;在相对不利的fg较小的地震作用下,拉索减震支座具有良好的限位能力,合理设置拉索刚度和初始间隙能有效防止桥梁碰撞、落梁等灾害.  相似文献   

7.
通过伪静力试验探讨了加载频率和位移幅值对形状记忆合金(shape memory alloy,SMA)金属橡胶阻尼器中SMA金属橡胶元件的刚度和阻尼特性等力学性能的影响,结果表明,SMA金属橡胶刚度随加载频率和位移幅值的增大而增大,能量耗散系数Ψ基本不受加载频率影响但随位移幅值的增大而减小。通过地震模拟振动台试验探讨了SMA金属橡胶阻尼器的减振效能,然后针对高墩桥梁,在考虑行波效应的地震多点激励作用下,对比分析未设置和设置防碰撞阻尼器的高墩桥梁非线性地震反应,研究其在地震作用下的控制效能,结果表明,防碰撞阻尼器可以有效防止主梁与主梁之间以及主梁与挡块之间的地震碰撞,并限制了桥墩的位移,从而减轻桥墩的地震破损,因此在高墩桥梁碰撞位置(伸缩缝处或接缝处)设置防碰撞阻尼器有助于提高桥梁整体抗震性能,但设置防碰撞阻尼器有可能增加主梁地震破损的可能性以及桥梁支座反应的不确定性。  相似文献   

8.
考虑地震动空间效应的城市高架桥梁地震碰撞响应分析   总被引:3,自引:0,他引:3  
分析了地震动空间效应对城市高架简支梁桥和多跨连续梁桥地震碰撞响应的影响.拟合了与规范反应谱相一致且考虑空间效应的人工地震波;建立了两种桥型的有限元模型;数值仿真并比较分析了一致激励以及仅考虑行波效应、仅考虑部分相干效应和同时考虑行波效应与部分相干效应的非一致激励等4种激励情况下,两种桥型的非线性地震碰撞响应.结果表明:地震动空间效应对桥梁地震碰撞响应的影响显著,且对连续梁桥的影响更为明显;考虑地震动空间效应会使桥梁的撞击力明显增大,同时考虑行波效应与部分相干效应时增幅最大;随着视波速的提高,地震动空间效应的影响逐渐减弱.因此,在城市高架桥梁地震碰撞响应分析中,必须考虑地震动空间效应的影响.  相似文献   

9.
以32 m简支梁桥为例,使用有限元软件SIMPACK和ANSYS分别建立CHR动车模型和32 m简支梁桥模型,进行两款软件的联合仿真,研究列车的通过速度和简支梁桥的刚度对桥梁动力响应的影响。研究结果表明:列车通过速度对桥梁跨中的竖向位移及竖向加速度影响比较大,跨中的竖向位移和竖向加速度均随列车通过速度的增大而增大,列车通过速度对桥梁跨中的横向位移和横向加速度影响较小;桥梁刚度对跨中的竖向位移、竖向加速度、横向位移和横向加速度的影响比较小,工程中在现有基础上增大桥梁刚度对提高桥梁结构的稳定性意义不大;该计算方法可用于车桥耦合振动分析,计算结果可为高速铁路桥梁建设提供依据。  相似文献   

10.
为了研究地震对车桥系统耦合振动的影响,采用最小二乘法对地震加速度进行校正拟合,消除位移时程因直接对加速度时程积分出现的漂移现象。根据弹性系统动力学总势能不变值原理及形成矩阵的对号入座法则,将轨道不平顺作为系统的自激激励源,地震作为外部激励,建立考虑地震作用的车桥系统耦合振动方程。并以某钢桁梁桥为例,采用计算机模拟的方法,建立列车和桥梁动力分析的有限元模型,研究地震对车桥系统耦合振动的影响。研究结果表明:在地震作用下,桥梁的动力响应主要取决于地震力,横向地震波对车辆与桥梁的横向动力响应具有非常重要的影响;竖向地震波主要影响车桥系统的竖向振动,对横向振动影响很小;但是,竖向地震波对脱轨系数、轮重减载率、车体竖向加速度的影响较显著,因此,在评判桥上列车的运行安全性时必须考虑竖向地震波的影响。  相似文献   

11.
以新建高速铁路客运专线三跨连续梁为研究对象,建立典型桥跨结构的空间动力分析模型。选取3条地震波,采用非线性动力时程分析方法,详细研究了考虑碰撞效应时连续梁桥的地震响应特性。结果表明:随着间隙单元初始间隙的减小,相邻梁发生碰撞的次数增加,碰撞力峰值也逐渐变大;当峰值加速度较低时,碰撞效应对连续梁固定墩的位移及内力响应的影响较小,但采用较大的峰值加速度时,碰撞效应对连续梁固定墩的位移及内力响应的影响比较显著。  相似文献   

12.
为了探索连续梁桥的地震损伤演化和破坏历程,在连续梁桥1∶3模型地震振动台台阵试验基础上,对该模型桥进行了非线性动力响应分析,考虑了主梁与桥台间以及横向挡块之间的碰撞效应对地震响应的影响,弥补了模型试验未考虑碰撞效应的不足.分析结果表明:数值分析结果与振动台试验结果较为吻合,两跨连续梁模型的主要破坏模式为墩柱破坏,中墩墩底为关键截面;纵向地震动作用下该模型结构加速度反应谱小于17.4 m/s2则结构不发生倒塌破坏;若考虑桥台对主梁的纵向约束作用,则主梁加速度响应增加、主梁位移减小、墩柱受力减轻,且该约束作用随接触间隙减小而越发显著;若考虑梁和挡块之间的碰撞,则主梁加速度增大,墩柱受力随着间隙的增加而增加.该研究成果可为后续连续梁桥的抗倒塌设计和抗震加固提供参考.  相似文献   

13.
探讨了铅销橡胶支座(LRB)用于桥梁减震的有效性及其铅销的优化配置,利用非线性时程分析法研究了典型“U”型和“V”型河谷上的梁式简支桥在不同地震波激励下的地震作用,结果表明采用合理配置的LRB较普通的橡胶支座(RB)具有同时减小支座的最大变位和降低桥墩的地震响应等优点,并指出桥梁采用LRB减震主要是靠墩与梁的动力相互作用来实现。  相似文献   

14.
为研究桥台混凝土挡块对中小跨径连续梁桥横向地震响应的影响,以一座连续桥梁为背景建立了有限元模型,采用非线性时程方法分析了桥台混凝土挡块的峰值强度对全桥地震响应的影响.研究结果表明:随着桥台混凝土挡块峰值强度的增强,桥台顶剪力需求逐渐增大,桥墩处支座位移需求逐渐减小,但减小幅值随着挡块峰值强度增加而减小并趋向于零.合理选取桥台处混凝土挡块的峰值强度能有效地减少桥墩的支座位移需求,并且能避免对桥台造成严重地震损伤.  相似文献   

15.
以某高速铁路大跨度连续梁桥及32 m简支梁桥为研究对象,针对CRTSⅡ型板式无砟轨道体系的结构特点,建立考虑轨道体系纵向约束及摩擦效应的线桥一体化计算模型,对2种不同的抗震体系(延性抗震体系及减隔震体系)进行非线性地震响应分析。研究结果表明:在剪力齿槽弹性工作状态下,轨道体系纵向刚度约束效应对桥梁下部结构地震反应的影响显著,但摩擦效应影响较小,可忽略。桥梁采用的抗震体系不同,在地震作用下轨道系统及剪力齿槽的受力及分布规律也不同。建议强震作用下板式无砟轨道体系的受力分析应合理考虑桥梁不同抗震体系的受力特征。最邻近连续梁的一跨简支梁的剪力齿槽水平剪力远大于其他跨简支梁的剪力,建议该跨的剪力齿槽应加强设计,以避免在地震作用下由于该处剪力齿槽的受力失效导致其他各剪力齿槽的连锁破坏。  相似文献   

16.
高速铁路桥梁的刚度远大于普通桥梁,当强烈地震发生时,桥梁的地震反应尤其是桥梁梁端的碰撞反应值得关注.另一方面,对于深厚软土地区,土与结构之间的相互作用不能被忽略.文章对比考虑与不考虑桩土相互作用效应,分析高铁桥梁在地震激励下的反应.分析结果表明:考虑桩土相互作用效应会使桥梁结构的自振周期延长、墩顶位移和加速度反应增大,但伸缩缝处的碰撞反应却减小.  相似文献   

17.
针对某油气管线悬索跨越工程,选用两条频谱特性不同的地震波,采用时程分析法研究行波效应和地震一致激励作用对管线悬索桥结构关键部位内力及位移的影响.研究结果表明:考虑行波效应后不同视波速下索塔内力、位移的峰值变化显著,其峰值均在波速1 000 m/s左右时出现,主梁竖向位移包络值随视波速增大而减小并且其位移包络图"反弯点"增多;索塔内力和位移在波速大于一定水平时趋近于一致激励,在加速度峰值相同但频谱特性不同的地震波激励下桥梁结构地震反应存在显著差异.  相似文献   

18.
为研究地震作用下门式墩结构对梁轨系统受力特性的影响,以合福线高速铁路某门式墩上3跨32 m简支梁桥为例,采用经验证的梁轨接触模拟方法,建立门式墩-桥梁-轨道系统精细化动力仿真模型。研究在多维地震作用下门式墩上简支梁桥-轨道系统动力响应特征,探讨节点连接方式、横梁刚度等关键设计参数对系统受力特性的影响规律。研究结果表明:采用门式墩结构后,结构体系刚度相对较小,系统自振频率降低;在地震作用下,采用门式墩结构的简支梁桥上钢轨纵向应力包络线呈菱形分布,其应力峰值均发生于墩、台及桥梁跨中附近;与普通墩相比,门式墩立柱底最大纵向剪力明显增大,钢轨节点的横向位移减小;水平地震激励角对门式墩系统受力、变形影响较大,在分析过程中需要加以考虑;在竖向地震作用时,钢轨及门式墩墩顶的竖向挠曲随着门式墩梁柱节点刚度的增大略减小;鉴于刚性节点可能导致结构延性降低、残余应力增大等,建议门式墩梁柱节点采用半刚性连接。  相似文献   

19.
利用OpenSees地震仿真模拟平台,建立了3×30m斜交简支梁桥计算模型,通过改变斜度、纵向伸缩缝间隙、梁体与横向挡块间初始间隙,研究结构地震碰撞反应的变化规律,研究发现:桥面峰值转角随斜度和伸缩缝间隙增大呈现先增大后减小的变化规律,随横向初始间隙增大而逐渐增大;梁体纵向最大位移随斜度和伸缩缝间隙增大而逐渐增大,随横向初始间隙增大呈现先减小后增大的变化规律;墩底最大反力和墩顶顺桥向最大位移的变化规律与梁体纵向最大位移的变化规律一致.  相似文献   

20.
为了避免桥台的地震破坏,提出一种新型桥台支座布置方式,通过双向滑动支座、弹塑性挡块和拉压连接装置的联合作用来工作.以2座连续梁桥为例,通过新型桥台支座布置方式和传统桥台支座布置方式的对比研究,分析了挡块屈服力、桥台约束刚度对桥梁横向地震反应的影响.结果表明:对于传统桥台支座布置方式,桥台承受的地震力随着地震强度的增大而增加,存在地震破坏风险;对于新型桥台支座布置方式,可以通过调节挡块横向屈服力来控制桥台地震力,既可使桥台分担一部分结构地震惯性力,又可避免桥台破坏.进行抗震设计时,可以根据具体的桥梁和对应的地震动输入,选择合适的桥台挡块横向屈服力,以使整座桥梁的地震反应达到最优状态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号