首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究减振型双块式振动衰减以及声辐射频域特性,基于FEM/BEM方法,建立轨道系统的振动力学模型和声学边界元模型。研究结果表明:轨下胶垫的减振优势主要体现在200~2 500 Hz频域范围内,减振层的减振优势主要体现在50~3 750 Hz频域范围内;在轨道结构系统中,钢轨声贡献率随频率增大而增大,低频时,轨道系统其他结构层的声辐射不容忽视;轨道系统各结构层的声辐射效率特征较复杂,均表现为开始在一频域范围内上升,而后趋于平稳震荡,钢轨声辐射效率变化速率明显比其他结构层的小;在125 Hz以下,钢轨轨腰声贡献率明显比轨头和轨底的大,而后随频率增加,轨底声贡献率比轨腰和轨头的大;本文预测的振动噪声与其他模型得出的结果有很好的一致性。  相似文献   

2.
针对振动压路机一级橡胶减振系统的工作状态进行分析,推导出橡胶减振系统动刚度及动阻尼的计算方法,通过试验探究振动频率对橡胶减振系统动态参数的影响规律,指出随着钢轮振动频率的增加,橡胶减振系统的动刚度、动阻尼大致呈二次曲线规律变化,且与压路机低幅振动时相比,在同一振动频率下高幅振动时一级橡胶减振系统表现出的动刚度更大.对于试验样机而言,当振动频率为30~35 Hz时机架与钢轮的振动相位差最大,一级减振系统的动阻尼值最大.  相似文献   

3.
剪切型减振器扣件减振性能良好,广泛应用于城市轨道交通线路,但在减振器扣件区段发生较为严重的钢轨异常波磨。在300 Hz频段减振器轨道振动加速度存在较大峰值带,发生轮轨强烈共振;在200~350 Hz频段,减振器扣件轨道系统的阻尼比很小,动刚度在300 Hz存在波谷。同时,振动加速度频域分布、行车速度和波磨特征波长具有高度相关性,所以,在300 Hz频段的轮轨共振是产生异常波磨的主要原因。针对此问题,提出通过安装调频钢轨阻尼器(TRD)的方案改善轨道动力特性,并进行安装前后的实验室动力特性测试。研究结果表明:安装TRD能够改善Ⅲ型减振器轨道的动力特性,调节频率,提高阻尼,降低工作频率,改善轨道的减振性能。本方案可以作为地铁线上整治异常波磨的有效方法。  相似文献   

4.
橡胶垫浮置板轨道变形控制及减振分析   总被引:1,自引:0,他引:1  
在进行轨道结构减振效果的优化设计时,需要考虑结构的变形限值条件.以橡胶垫浮置板轨道为研究对象,采用模态分析和谐响应分析,对轨道系统的振动特性进行了研究.考虑钢轨的变形限值,提出了减振性能最优的板下胶垫刚度.利用建立的地铁车辆-橡胶垫浮置板轨道-基础空间耦合系统动力分析模型,计算了该胶垫刚度下的轨道、基础动力响应,对其减振效果进行了评估.研究表明:橡胶垫浮置板轨道具有较好的减振性能.按照钢轨变形限值4mm控制,轨道固有频率为18.7Hz.在1~80Hz频率范围内,浮置板轨道的综合减振效果为10.4dB.研究成果可用于实际工程,为类似减振轨道结构的选型和优化设计提供一定的借鉴.  相似文献   

5.
为了研究沿海环境双块式无砟轨道结构早期湿度和收缩应变分布特征,基于ABAQUS子程序HETVAL建立有限元模型,研究混凝土浇筑早期湿度和湿度梯度分布形式,得出道床板收缩应变分布规律。研究结果表明:1)在洒水养护期时,底座板竖向和横向湿度梯度最大值分别为0.68%/mm和0.202%/mm;受环境湿度影响较大的区域为埋深90 mm,底座板内部湿度在龄期28 d时趋于一致。2)轨枕内部相对湿度随着龄期增加而逐渐下降,浇筑第56天时轨枕内部湿度基本一致。3)道床板浇筑后,轨枕表面的最大竖向和横向湿度梯度分别为1.64%/mm和0.59%/mm;在道床板浇筑35 d时,双块式无砟轨道内部湿度基本一致。4)在洒水养护阶段,轨枕与道床板界面的自由收缩应变最大值为270.58×10-6;在自然养护阶段,受大气湿度影响,其收缩应变与湿度变化幅度呈线性相关;道床板表面在湿度饱和期的收缩应变占总收缩应变的58.21%。  相似文献   

6.
为了预测与控制高速铁路无砟轨道区段轮轨表面粗糙度激扰的轮轨滚动噪声,应用车辆-轨道耦合动力学理论和声辐射理论建立了轮轨滚动噪声预测模型,计算分析了无砟轨道结构对轮轨滚动噪声的影响,研究了高速车辆运行于无砟轨道时产生的轮轨滚动噪声的特性,研究结果表明,①在无砟轨道路基区段高速列车运行产生的轮轨滚动噪声中,钢轨辐射的主要是500~2 000Hz的中、高频噪声,车轮辐射的主要是1 600~4 000Hz的高频噪声,轨道板或道床板辐射的主要是125~500Hz频段的噪声;②随着车速增加,轮轨噪声辐射的最大声级相应增加;③轮轨路旁瞬时声压级以钢轨最大,轨道板最小,车轮处于两者之间;④在距线路中心线5~50m范围内,随着水平距离加倍,高速列车轮轨噪声辐射声级相应地衰减3~6dB.  相似文献   

7.
为获取高速铁路CRTSⅢ型板式无砟轨道底部荷载横向传递规律,通过实车试验并建立多车-无砟轨道-路基空间耦合分析模型开展研究,对不同行车速度下扣件支点反力和复合板与底座板下荷载横向分布规律进行了分析.研究结果表明:仿真分析模型能够较好地模拟现场行车荷载效应.行车速度对扣件支反力和板下荷载横向分布影响较小;建议轮轴作用点处扣件荷载承担比例选取为40%,与其相邻的两个扣件由近及远依次取为25%和5%;实测复合板底部荷载在横向上呈典型的双峰型分布,峰值处压应力最大为149.5kPa;实测底座板底部荷载在横向上呈M型分布,峰值处压应力最大为16.2kPa;既有规范在无砟轨道底部荷载取值时缺乏对扣件支反力影响范围、不同无砟轨道厚度及结构特征、基础刚度、各动车组参数等影响因素的考虑,建议开展针对性研究,完善无砟轨道设计参数体系.  相似文献   

8.
为研究多跨简支梁桥上不同无砟轨道对应无缝线路的受力特点,基于梁轨相互作用原理推导了可以考虑非线性阻力的多跨简支梁梁轨相互作用公式,并与有限元法进行了对比.分别建立了32 m标准跨度简支梁桥上不同无砟轨道模型,分析对比了实测温度荷载与制挠力耦合作用下各无砟轨道对应的无缝线路受力规律,同时探讨了简支梁跨数墩顶刚度以及扣件阻力等结构参数的影响.结果表明:对于32 m标准跨度简支梁,随着简支梁跨数的增加,钢轨附加应力最大值趋于稳定,且稳定时的最大值均小于规范限值,对于铺设无砟轨道的简支梁桥,其跨数不受钢轨附加应力限制;对于单元板式及双块式无砟轨道,当墩顶纵向刚度大于2 000 kN/cm时,墩顶刚度的变化对其钢轨附加应力的影响很小;多跨简支梁桥上无砟轨道不建议采用小阻力扣件.  相似文献   

9.
为研究Vanguard扣件在地铁曲线段的减振效果,以北京地铁5号线某曲线段为例,分别对DTVI_2扣件和Vanguard扣件下列车运行引起的地表振动响应进行现场测试.并通过建立相应的三维动力学数值模型对比分析了两种扣件在直线段和曲线段的地表动力响应特性和衰减规律.通过分析振动响应峰值、最大垂向计权Z振级及插入损失,研究了Vanguard扣件的减振效果.根据现场实测以及数值分析结果可知:列车运行引起的地铁曲线段地表动力响应高于直线段,圆曲线和缓和曲线的动力响应特性类似且量值接近;列车运行引起的地表横向及垂向动力响应随距线路中心线横向距离的增加而呈起伏式衰减;列车运行于DTVI_2扣件和Vanguard扣件的轨道上时引起的地表垂向振动响应显著的频段分别位于60Hz和30Hz附近;Vanguard扣件减振效果显著,对曲线段水平向振动响应的减振性能良好.  相似文献   

10.
针对目前地铁隧道内碎石道床减振性能不明确的问题,建立了车辆-碎石道床-隧道-土体空间耦合动力学模型,分析了碎石道床对隧道振动特性的影响,并与传统隧道内整体道床结构进行了对比.研究结果表明:相较于整体道床,碎石道床隧道壁1.5 m处振动加速度可减小31.4%,最大减振量为4.29 dB;随道床厚度的增加,道床及隧道壁加速度均不断降低,综合考虑减振需求、隧道限界及养护维修要求,建议地铁隧道内碎石道床厚度取350 mm;单独采用轨枕垫时,隧道壁1.5 m处加速度降低45.35%,最大减振量可达8.51 dB,对应中心频率80 Hz;单独采用道砟垫时,隧道壁1.5 m处加速度降低49.19%,最大减振量可达10.52 dB.地铁隧道内采用碎石道床轨道结构,具有良好的减振效果,可作为地铁隧道内减振轨道使用.  相似文献   

11.
为了提供竖曲线上无砟轨道设计的理论依据,对列车动荷载对竖曲线桥上带减振扣件整体道床轨道动力学特性的影响进行研究。参考贵阳地铁1号线带减振扣件的整体道床轨道结构形式,基于多体系统动力学和轮轨系统动力学的基本原理,简化建立列车-轨道-桥梁系统垂向振动空间模型,计算分析不同速度、坡度代数差和桥梁竖曲线半径对列车和轨道结构动力学特性的影响规律。研究结果表明:从行车安全和舒适度角度出发,对于在竖曲线桥上带减振扣件的整体道床轨道,当行车速度为80 km/h时,建议有竖曲线的坡度代数差应小于18‰,无竖曲线的坡度代数差应小于4.5‰,竖曲线半径应大于2.5 km;当行车速度为100 km/h时,建议有竖曲线的坡度代数差应小于10‰,无竖曲线的坡度代数差应小于4‰,竖曲线半径应大于4 km;当行车速度为160 km/h时,建议有竖曲线的坡度代数差应小于5‰,无竖曲线的坡度代数差应小于2‰,竖曲线半径应大于5 km。  相似文献   

12.
为分析地铁隧道中浮置板轨道的减振特性,基于轨道-隧道-地基二维耦合模型,通过引入位移势函数和双重傅里叶变换,推导了移动简谐荷载作用下二维耦合模型的位移响应解答,研究了浮置板轨道参数敏感性.研究表明,二维耦合模型存在3个自振频率,地层的位移响应以低频为主,峰值频率在1Hz左右,不同荷载频率下地层竖向位移沿深度的变化规律不同.地层加速度响应以中低频为主,第二自振频率对应的地层加速度峰值最大,采用浮置板轨道并不能减少地层振动位移,但可以有效降低1.414倍第二自振频率以上地层振动的加速度响应.增加浮置板质量和降低钢弹簧刚度可以减少地层的加速度响应达到减振目的,改变钢轨扣件刚度和浮置板抗弯刚度对地层加速度响应的影响很小.研究可为地铁环境振动的快速评估提供参考.  相似文献   

13.
无砟轨道道床板施工是无砟轨道施工的最后一道关键工序,其精度控制是保证列车安全舒适运行的前提。如何控制和减小道床板裂缝宽度,延长其使用寿命是施工的技术关键所在。本文着重以双块式无砟轨道道床板施工为例,对道床板裂缝形成原因进行了分析,提出了缩小裂缝宽度,以及整治和修复裂缝的建议措施。  相似文献   

14.
高架钢弹簧浮置板轨道减振特性分析   总被引:3,自引:0,他引:3  
分别采用有限元和现场试验方法从时频域角度对高架钢弹簧浮置板轨道结构的减振特性进行了分析.研究结果表明,减振器刚度和间距的改变对浮置板前10阶振动频率分布影响较大,减振器刚度和间距的变化是通过改变浮置板单位长度刚度来达到控制减振效果的目的,浮置板顶升后高架箱梁结构顶板、翼缘、腹板和底板的振动水平在25~100 Hz范围内分别减小11~22 dB,12~20 dB,20~30 dB和12~21dB,减振效果随减振器刚度的增大而减小,随减振器间距的增大而增大,箱梁结构的位移受减振器刚度和间距变化的影响较小;浮置板轨道在63~2 000 Hz范围对轮轨噪声具有一定的降噪效果.  相似文献   

15.
在分析客运专线有砟道岔轨道刚度组成的基础上,建立了有砟道岔轨道动刚度的计算方法,分析了我国时速250 km客运专线有砟道岔轨道动刚度特性.结果表明:心轨的动静刚度比最大,基本轨、尖轨和导轨次之,翼轨最小;在小于100 Hz的频段上,各钢轨的动刚度随着激振频率增加而减小;在0~250 Hz的频段上,各钢轨会出现3个共振峰.  相似文献   

16.
为研究复合轨枕有砟轨道动力性能,试验铺设轨道结构实尺模型,采用落轴冲击的方法,测试不同落轴高度冲击下钢轨、轨枕、道床、基础的加速度及钢轨的应变,并推算轨道动刚度和阻尼。研究结果表明:与弹性轨枕有砟轨道对比,复合轨枕钢轨加速度较大,衰减快;复合轨枕道床和基础加速度峰值略小,道床衰减较慢;2种轨道结构基础加速度衰减均较慢;在1~10 Hz范围内,复合轨枕振动能量较大,减小了其轨道钢轨和基础的振动,使得2种轨道动力特性差异较大;2种轨道弹性均很好,使得动刚度较小,复合轨枕和弹性轨枕轨道动刚度分别为28~32 kN/mm和38 kN/mm,阻尼分别为170~195 kN?s/m和146~178 kN?s/m。从减振性能角度考虑,复合轨枕有砟轨道效果更好。  相似文献   

17.
基于列车-有砟及无砟轨道系统空间振动计算模型,采用列车脱轨能量随机分析方法,分别计算货物列车在有砟、无砟轨道上的脱轨全过程,得出2种车轨系统横向振动极限抗力作功及其动力响应,分析货物列车的运行安全性、2种车轨系统的空间振动特性。研究结果表明:与有砟轨道相比,无砟轨道的抗脱轨能力最大可提高45.9%,车速为90 km/h时无砟轨道上车体竖向Sperling平稳性指标、轮对横向力、轮轨竖向力分别减小73.5%,22.1%和27.3%;无砟轨道各部件横向位移、加速度均小于有砟轨道相应值,而钢轨竖向位移大于有砟轨道相应值,但由于无砟轨道竖向位移主要由扣件承担,导致钢轨传至道床板的竖向位移衰减75.3%;无砟轨道各部件竖向加速度均大于有砟轨道相应值,产生的振动、噪声对周围建筑影响更大。建议在重载铁路新线设计中优先采用无砟轨道,但应采取减振降噪措施。  相似文献   

18.
为了研究夏季高温道床板浇筑早期温度和湿度分布规律,制作了新建高铁桥上双块式无砟轨道道床板试验模型,开展了道床板浇筑早期温湿度长期监测试验,研究了温湿度分布规律和温度竖向、横向和纵向分布形式,并基于GEV模型提出了日温度最值代表值和日最大竖向正、负温度梯度代表值。研究结果表明:1)当龄期为11 h时,道床板温度达到最大值;在水化热影响下,浇筑后92 h内道床板温度随着埋深增加而呈递增趋势,随后受气温影响,温度呈相反规律变化;纵向板中湿度减小率比板端的高;2)道床板竖向温度是埋深和时间的非线性函数,分布呈“抛物线”形;埋深100~230 mm是高温核心区;道床板板中处竖向温度梯度最大,且竖向温度梯度随着埋深增加呈现出较大差异性;3)受线路走向影响,横向温度呈凸形非对称分布;纵向温度梯度较小,为了简化计算可以忽略不计;4)板中竖向负温度梯度代表值为67.17℃/m,大于规范值,建议竖向温度梯度取值在有条件情况下可根据现场实测数据确定;5)道床板早期温湿度、竖向温度梯度分布应重点研究板中断面,为了防止道床板浇筑后表面出现裂纹,应注重洒水养护,尤其是道床板板中洒水要均匀且充足。  相似文献   

19.
为提高梯式轨枕轨道综合减振效果,分别将钢轨振动位移和传递到基础的总功率流作为目标函数,枕下弹性垫板动刚度、材料损耗因子、块数以及纵向轨枕横截面面积作为优化变量,使用多元连续函数蚁群算法进行优化研究。结果表明:要减少钢轨的振动位移,需要增大枕下弹性垫板动刚度、纵向轨枕的横截面面积以及枕下弹性垫板的块数,同时减小枕下弹性垫板的材料损耗因子;要减小传递到基础的总功率流,则需要减小枕下弹性垫板的动刚度和枕下弹性垫板的块数,同时增大枕下弹性垫板的材料损耗因子以及纵向轨枕的横截面面积。使用统一目标函数法将多目标函数简化为单目标函数,得到最优化结果,和目前梯式轨枕轨道使用的参数相比,钢轨振动位移优化率达50.9%,传递到基础的总功率流优化率达47.6%。  相似文献   

20.
通过对我国中部山区复杂地形地质条件下高速铁路桥隧过渡段无砟轨道钢轨和道床板纵向温度分布的连续观测,得到桥隧过渡段钢轨和道床板的纵向温度分布规律,并提出适用于春季的桥隧过渡段钢轨和道床板纵向温度梯度荷载模式.结果表明:从隧道外到隧道内,钢轨温度变化幅值不断减小,隧道内75 m处的钢轨温度峰值出现时刻比隧道外22 m处的滞后4 h;钢轨纵向温度随隧道径深增加变化最大的位置位于0~8 m区间,隧道深75 m以后,钢轨的温度变化幅度明显变小,基本稳定在0.2℃;道床板纵向温度随隧道径深增加变化最大的位置位于0~8 m区间,隧道深25 m以后,道床板的温度变化幅度明显变小,基本稳定在1.7℃;一天中钢轨和道床板温度沿纵向变化幅度最大的时刻出现在14:00~16:00;纵向温度梯度模式可分为钢轨和道床板两类,钢轨和道床板纵向温度梯度均可采用分段函数进行拟合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号