首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
关于丢番图方程x4±4y8=pz4   总被引:4,自引:0,他引:4  
利用初等数论及Fermat无穷递降法,证明了丢番图方程x8-4y4=pz4、x4-4y8=pz8、64x8±y4=pz4均无正整数;方程x4+4y8=pz4除开p=5仅有解x=y=z=1外,其他情形均无正整数解,同时还解决了方程x8+my4=z4在m=±p,±2p,±4p,±8p的求解问题.  相似文献   

3.
利用初等方法及Fermat无穷递降法,获得了丢番图方程x4±5x2y2+5y4=z2与x4±10x2y2+5y4=z2的正整数解公式.  相似文献   

4.
关于丢番图方程X4+my4=nz2   总被引:2,自引:0,他引:2  
利用数论方法及Fermat无穷递降法,证明了丢番图方程x4+my4=nz2在(m,n)=(-18,1),(72,1),(12,1),(36,1),(-27,1),(±108,1),(-27,-2),(-4,-27),(6,1),(-24,1),(2,1),(-8,1)时均无正整数解;在(m,n)=(-4,-3)和(-9,-8)时均只有正整数解x=y=z=1,从而解决了Mordell和曹珍富遗留的难题.  相似文献   

5.
关于丢番方程4^4±4y^8=pz^4   总被引:2,自引:2,他引:0  
  相似文献   

6.
关于丢番图方程x4±4y8=pz4   总被引:2,自引:2,他引:2  
利用初等数论及Fermat无穷递降法 ,证明了丢番图方程x8- 4y4 =pz4 、x4 - 4y8=pz8、6 4x8± y4 =pz4 均无正整数 ;方程x4 +4y8=pz4 除开 p =5仅有解x=y =z=1外 ,其他情形均无正整数解 ,同时还解决了方程x8+my4 =z4 在m =± p ,± 2 p ,± 4p ,± 8p的求解问题  相似文献   

7.
关于丢番图方程ax4+bx2y2+cy4=dz2   总被引:2,自引:0,他引:2  
该文利用初等数论和Fermat无穷递降法 ,证明了丢番图方程ax4 bx2 y2 cy4=dz2 在 (a ,b ,c,d) =(1,± 5 0 ,12 5 ,1) ,(1,± 2 5 ,12 5 ,1) ,(1,- 10 ,5 ,1) ,(1,5 ,5 ,1) (1,± 10 ,5 ,5 ) ,(1,± 5 ,5 ,5 ) ,(1,- 5 0 ,12 5 ,5 )和 (1,2 5 ,12 5 ,5 )时均无满足 (x,y) =(x,z) =(y ,z) =1的正整数解。  相似文献   

8.
周科 《广西科学》2005,12(4):255-258
设p为素数,利用Fermat无穷递降法,研究方程x4±3px2y2+3p2y4=z2与x4±6px2y2-3p2y4=z2正整数解的存在性,证明该方程在p≡5(mod 12)时均无正整数解,在p≡11(mod 12)时有解且有无穷多组正整数解,获得方程无穷多组正整数解的通解公式和方程的部分正整数解.  相似文献   

9.
关于丢番图方程x8+my4=z2   总被引:2,自引:0,他引:2  
利用数论方法及Fermat无穷递降法,证明了丢番图方程x8+my4=z2在m=±p,±2p,±4p,±8p及素数p满足一定条件下无正整数解,从而完善了Mordell等人的结果;并且获得了方程x4-2py4=z2和x4+8py4=z2的无穷多组正整数解的通解公式.  相似文献   

10.
利用初等方法及Fermat无穷递降法 ,获得了丢番图方程x4 ± 5x2 y2 5y4 =z2 与x4 ± 10x2 y2 5y4 =z2 的正整数解公式  相似文献   

11.
何桃  郭金保  穆秀梅  赵杏花 《河南科学》2011,29(12):1421-1422
设s为正整数且2|s,素数p=27s2+1,利用初等方法证明了丢番图方程x3-1=py2仅有平凡整数解(x,y)=(1,0).  相似文献   

12.
利用初等数论的方法得到丢番图方程x3-1=py2无正整数解的一个充分条件.设p是奇素数,证明了当p=3(4k+3)(4k+4)+1,其中k是非负整数,则方程x3-1=py2无正整数解.  相似文献   

13.
利用一种初等的证明方法,即递推序列,同余式和平方剩余的方法,对一个不定方程x2-3y4=22的正整数解进行了研究,证明了不定方程x2-3y4=22仅有正整数解(x,y)=(5,1),(85,7)。  相似文献   

14.
运用递归数列,同余式和平方剩余证明了不定方程x^2-3y^4=222仅有正整数解(x,y)=(15,1)。  相似文献   

15.
16.
关于不定方程x2-3y4=286   总被引:2,自引:0,他引:2  
利用一种初等的证明方法,对不定方程x2-3y4=286的正整数解进行了研究.证明过程中仅涉及到初等的数论知识,就是运用递归数列,同余式和平方剩余的方法.首先利用Pell方程的解的性质把不定方程x2-3y4=286的解转化为由4个非结合类给出;对其每一种情况都利用递归数列,同余式和平方剩余的相关知识对其是否有正整数解进行证明,如果有正整数解并进行求解;最后得出该不定方程x2-3y4=286仅有正整数解(x,y)=(17,1),(23,3).  相似文献   

17.
不定方程x2-Dy4=C(其中D,C为给定的整数,且D>0为非平方数)曾引起许多人的兴趣,Cohn,Tzanakis,黎进香等都对此类方程进行过研究.本文讨论了不定方程x2-7y4=93正整数解的情况.所用方法是先用Pell方程将x2-7y4=93的可能整数解进行分类,使其包含在几个式子里面,然后对这几个式子取模,借助于平方剩余的理论缩小解的范围,同时还利用了一些初等的证明方法,如递推序列,同余式.最后证明了不定方程x2-7y4=93仅有正整数解(x,y)=(10,1),(130,7).  相似文献   

18.
利用一种初等的证明方法,对一个不定方程x2-3y4=166的正整数解进行了研究。证明过程中仅涉及到初等的数论知识,即运用递归数列、同余式和平方剩余的方法。首先利用Pell方程的解的性质把不定方程x2-3y4=166的解转化为由两个非结合类给出,然后再进一步利用相关知识使得问题简化为两种相对简单的情况,对其每一种情况都利用递归数列,同余式和平方剩余的相关知识对其是否有正整数解进行证明,如果有正整数解则进行求解。最后得出该不定方程x2-3y4=166仅有正整数解(x,y)=(13,1),(293,13)。  相似文献   

19.
关于Diophantine方程x3-1=3py2   总被引:1,自引:0,他引:1  
设P是奇素数.该文证明了:当P=12s^2 1,其中r是正整数,则方程x^3-1=3py^2无正整数解(x,y).  相似文献   

20.
运用初等方法及同余理论,研究丢番图方程正整数解。证明了Diophantine方程x3-1=38y2仅有两组正整数解(x,y)=(1,0)(7,3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号