首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为探究配筋高应变强化T形超高性能混凝土(UHPC)梁的抗弯承载力计算方法,对5根梁试件进行了三分点加荷纯弯试验,试件变化参数为配筋率和配筋强度.绘制了钢筋与高应变强化UHPC的荷载-挠度曲线,将T形梁破坏过程分成3个阶段:弹性阶段、裂缝发展阶段、持荷至破坏阶段.与普通混凝土梁不同的是,在高应变强化UHPC梁体达到极限承载力时,受拉区UHPC对抗弯承载力有贡献作用;同时,受压区UHPC应力-应变依然为线性关系.在考虑受拉区UHPC开裂后抗拉强度的基础上,提出了受拉区UHPC等效矩形应力系数,在平截面假定基础上推导出了配筋高应变强化T形UHPC梁抗弯承载力计算公式,并与国外提出的计算方法进行对比,分析各计算方法的准确性.结果表明,所提出方法的计算值与试验值有较高的吻合度,可为配筋高应变强化T形UHPC梁理论分析和设计提供参考.  相似文献   

2.
基于极限平衡理论,并考虑尺寸效应,采用简化的混凝土破坏准则和超高性能混凝土(UHPC)层破坏理论得到了超高性能混凝土-混凝土(UHPC-NC)矩形截面组合梁斜截面抗剪承载能力计算方法.设计了相应的组合梁抗剪试验.试验数据与理论计算结果的对比分析表明,该计算方法既能准确计算组合梁的抗剪承载力,又能有效反映UHPC层、UHPC层内配筋、尺寸效应等各个参数对于UHPC-NC组合梁抗剪承载力的影响.试验结果反映出UHPC层可以大幅提高整体结构的抗剪承载力和延性.  相似文献   

3.
为研究将高强钢筋用于超高性能混凝土(UHPC)的可行性,通过6根梁的正截面抗弯试验,研究了配筋率、截面形式(矩形与T形梁)等对抗弯性能的影响规律.试验结果表明,HRB500级钢筋与UHPC适配良好,可充分发挥两者高强性能;配筋率对开裂荷载影响小,但可显著提高梁的极限承载力;为防止梁发生斜截面破坏,需要按计算配置箍筋;UHPC梁裂缝细而密,考虑受拉区UHPC塑性变形而建立的开裂弯矩公式与实测值吻合良好;据简化的UHPC本构模型建立的正截面极限承载力公式,预测精度较高.  相似文献   

4.
钢纤维掺量对R-UHPC梁受弯性能影响的研究   总被引:2,自引:0,他引:2  
以钢纤维掺量为主要参数,进行了5根R-UHPC梁的受弯性能试验.分析了试验梁的荷载-挠度曲线、截面应变和破坏状态.试验结果表明:UHPC材料根据其极限拉应变与钢筋屈服应变的关系,可分为U0类、U1类和U2类.U0类UHPC受拉应力-应变曲线无硬化段,当材料出现开裂,UHPC就退出工作,其抗弯极限承载力不应考虑UHPC的抗拉贡献.U1类、U2类有硬化段,材料开裂后,UHPC并未退出工作,尤其是U2类的R-UHPC梁,UHPC拉应力对梁抗弯极限承载力贡献率大于20%,在计算时需要考虑这部分贡献.从纤维掺量对UHPC抗拉性能出发,推导了R-UHPC梁抗弯极限承载力的计算方法,其结果稳定,且与实测值吻合较好.  相似文献   

5.
为明确截面形式对UHPC抗拉强度在钢筋超高性能混凝土(R-UHPC)梁抗弯承载力贡献的影响,考虑实测得到的7种不同钢纤维掺量UHPC的抗拉和抗压性能,对矩形、箱形和T形R-UHPC梁进行抗弯承载力计算,构建并分析抗拉强度贡献率、抗压强度利用率等指标.结果表明:UHPC根据其硬化段长短和其极限应变与钢筋屈服应变的关系,可划分为U0、 U1和U2类材料. UHPC抗拉强度的贡献率与截面形式有关:矩形梁箱形梁T形梁,对U1和U2类UHPC的矩形梁或箱形梁,宜考虑其抗拉强度对梁抗弯承载力的贡献.材料设计时,若考虑UHPC抗拉强度的作用,宜采用U2类材料.截面设计时, UHPC抗拉强度的贡献,矩形梁应考虑,箱形梁可考虑, T形梁可不考虑,宜采用箱形、 I形或工形梁截面以提高抗拉强度贡献. UHPC抗压强度利用率,随纤维掺量的增大而下降,利用率在45.5%~60.2%范围.工程应用时,可应用UHPC-NC叠合梁或预应力UHPC梁以提高抗压强度利用率.  相似文献   

6.
为了研究部分充填混凝土窄幅钢箱连续组合梁负弯矩区抗弯承载力,完成了3根简支组合梁在负弯矩作用下的弯曲性能试验;分析了影响部分填充混凝土窄幅钢箱连续组合梁负弯矩区结构受力性能的主要因素。通过换算截面原理以及混凝土翼板参与受拉的程度系数m来确定组合梁截面惯性矩与抗弯刚度,推出部分充填混凝土窄幅钢箱连续组合梁负弯矩区的弹性抗弯承载力计算公式;基于简化的塑性理论,得到负弯矩区极限抗弯承载力计算方法,并进行计算值和实测值对比分析。总体而言,充填的混凝土限制了受压部位钢箱的结构变形,能够明显提高钢箱组合梁负弯矩区的弹性工作范围和极限承载力,使钢箱组合梁具有更好的工作性能。  相似文献   

7.
钢纤维掺量会影响超高性能混凝土(UHPC)的抗拉、抗压强度等材性,进而影响钢筋UHPC(R-UHPC)矩形梁的受弯、受剪性能.开展纤维掺量对R-UHPC梁抗弯、抗剪极限承载力的影响分析.结果表明,随纤维掺量的提高,R-UHPC梁的抗弯、抗剪承载力均相应提高.但由于钢纤维对抗弯、抗剪极限承载力的贡献量不同,提高的作用也不同.钢纤维掺量对R-UHPC梁抗弯承载力的影响远小于它对抗剪承载力的影响.对于R-UHPC矩形梁,存在一个临界的钢纤维掺量.当钢纤维掺量小于此值时,梁将受剪破坏,反之,将受弯破坏;临界钢纤维掺量附近的R-UHPC梁则可能发生弯剪复合破坏.此外,钢纤维掺量还会影响矩形梁的斜裂缝开裂荷载.  相似文献   

8.
将聚乙烯醇纤维混凝土布置在钢筋混凝土梁受拉区,设计了12根层布式聚乙烯醇纤维钢筋混凝土梁,改变纤维体积率、纤维层厚度、混凝土强度等级、截面配筋率、受拉钢筋强度等级5个影响因素,设计了5组对比试验,分别对12根试验梁做抗弯性能试验,以判断层布式纤维混凝土梁的抗弯性能。  相似文献   

9.
再生混凝土梁抗弯承载力的试验   总被引:2,自引:0,他引:2  
对10根不同废弃骨料掺入量的再生混凝土梁进行了抗弯承载力试验,研究了再生混凝土梁正截面受力全过程和破坏形态.试验结果表明:再生混凝土梁与普通混凝土梁一样,正截面受弯破坏都需要经历弹性、开裂、屈服和破坏4个阶段;再生混凝土梁同样符合平截面假定.最后,根据GB50010-2002<混凝土结构设计规范>提出的普通混凝土梁的计算公式,验算了再生混凝土梁的极限承载力与普通混凝土梁极限承载力差别不大,可以用现行的公式计算.  相似文献   

10.
应用ABAQUS软件建立30m预应力超高性能混凝土(UHPC)小箱梁的有限元数值模型,计算结果与小箱梁足尺试验结果吻合良好. 应用有限元方法,对其结构进行优化设计分析. 结果表明,随着钢筋用量的减小,梁的刚度逐渐减小,极限承载能力明显降低,其中纵向受拉钢筋对箱梁抗弯承载力的提高作用明显,而箍筋与构造筋的贡献很小,大量缩减普通钢筋仍能满足抗弯承载力设计要求. 优化后,小箱梁承载力、抗裂及挠度验算结果均满足设计要求,且经济效益明显.  相似文献   

11.
针对部分充填砼钢箱连续组合梁裂缝控制问题,开展超高性能混凝土(UHPC)翼板-部分充填砼钢箱连续组合梁抗裂性能研究,探讨该组合梁裂缝控制的新途径.通过3根部分充填砼钢箱连续组合梁试验,得到挠度、滑移和裂缝的开展特征.基于ABAQUS软件建立部分充填砼钢箱连续组合梁有限元分析模型,分析UHPC翼板部分充填砼钢箱连续组合梁关键参数对受力性能的影响.结果表明:负弯矩区采用UHPC翼板能显著提高组合梁抗裂性能;当负弯矩区UHPC翼板长为0.3倍跨径、厚度为1/3翼板总厚时,能满足裂缝控制要求且经济合理;与普通混凝土相比,高应变强化UHPC初裂荷载提升2.3倍,可视开裂荷载提升7.6倍.  相似文献   

12.
为研究超高性能混凝土加固钢筋混凝土梁的抗剪性能,采用不同厚度的超高性能混凝土对梁侧面进行加固,并对其进行单点静载试验。观察梁的破坏过程和破坏模式,并根据梁的荷载-应变曲线,分析超高性能混凝土加固层对钢筋混凝土梁承载力和刚度的影响;同时,采用数字图像相关方法对试验梁的裂纹发展进行了对比分析。结果表明:与未加固梁相比,加固梁的破坏形态由脆性剪切破坏转变为延性弯剪及弯曲破坏;随着加固层厚度的增加,加固梁开裂荷载、峰值荷载和变形能力明显提高;通过数字图像相关方法,可以直接从试验梁表面获取细微变形和应变分布情况,并进一步预测试验梁表面微裂缝位置及破坏形式。最后,建立了超高性能混凝土加固钢筋混凝土梁的抗剪承载力计算公式,并与试验结果进行了对比,结果吻合较好。  相似文献   

13.
为充分发挥超高性能混凝土(UHPC)和普通钢筋混凝土(RC)材料在箱梁桥应用中的力学性能,开展了节段拼装预应力UHPC-RC组合箱梁的静载试验,研究其受力过程、破坏形态和裂缝开展情况。结果表明:组合箱梁经历了弹性变形、裂缝开展和结构破坏三个不同受力阶段;裂缝首先由梁跨中节段接缝张开逐步发展至顶板翼缘,梁底板和腹板均未见明显裂缝,开裂的受拉区应力主要由预应力筋承担,最大裂缝宽度随荷载增加分阶段线性增大,试验梁最终以RC顶板混凝土压溃破坏而失效;受力过程中,UHPC U型梁和RC顶板能够保持良好的协同工作;组合箱梁存在一定的剪力滞效应。  相似文献   

14.
针对预制拼装RC管廊自重大和吊装难的问题,通过试设计UHPC预制拼装管廊主体构造,并进行1:2模型的静力试验,得到了各级荷载作用下UHPC综合管廊的顶板、底板和侧墙的破坏形态、荷载-变形关系、钢筋和混凝土应变,并对整体受力机制、破坏模式和极限承载力进行了分析。结果表明,UHPC管廊重量可减少30%,破坏模式与RC管廊基本一致,均为弯曲破坏,但UHPC管廊的开裂荷载和变形能力明显提高。在实测数据的基础上,通过简化拉压区应力分布图形,建立UHPC综合管廊抗弯极限承载力的计算方法,得到的计算值与实测值吻合良好,误差在10%左右。提出的计算公式可为UHPC综合管廊的设计计算提供参考。  相似文献   

15.
UHPC加固箱梁顶板受弯性能试验研究   总被引:1,自引:0,他引:1  
提出密配筋UHPC(超高性能混凝土)加固钢筋混凝土箱梁顶板方法,以消除混凝土箱梁顶板因开裂导致结构承载能力和耐久性普遍降低两类病害.为探究该加固方法在集中荷载下的箱梁顶板横向受弯性能,对3块足尺箱梁顶板局部模型进行试验研究.试验结果表明:负弯矩作用下,受拉的UHPC层显著提高了加固板的抗裂性能和刚度;加固试验板的开裂强度取决于UHPC的弹性抗拉性能;裂缝宽度为0.2mm时的持荷水平相对于未加固试验板提高了255.8%;当裂缝宽度小于0.27mm时,荷载与最大裂缝宽度关系近似线性.正弯矩作用下,UHPC层受压,加固试验板的开裂强度取决于封闭裂缝所用黏胶的抗拉强度;因为普通混凝土区域裂缝出现较早,正弯矩加固板在前期表现出略微偏大的挠度,但后期挠度和裂缝宽度的增长速度均明显小于未加固板,致密的UHPC层为箱梁顶板提供良好的防水性能,加固层对正弯矩试验板刚度的提高和裂缝发展的控制效果较为明显;破坏形态符合预期,破坏荷载与理论计算结果吻合良好.  相似文献   

16.
为了研究预应力超高性能混凝土(UHPC)工字形梁的抗剪性能和抗剪承载力计算方法,本文设计并完成了3片预应力UHPC工字形梁的单点加载试验,获得了试验梁的荷载-位移曲线、破坏模式和裂缝分布特征等关键结果;基于试验结果、瑞士和法国UHPC规范、我国公路桥梁规范及公路桥涵超高性能混凝土应用规范意见稿计算了试验梁的抗剪承载力,分析了各个规范的适用性。此外,基于修正压力场理论(MCFT),分别采用Mohr-Coulomb准则和Rankine准则的计算了试验梁的抗剪承载力,并进行了分析讨论。研究表明:预应力UHPC工字梁的抗剪承载力随着剪跨比的增加而减小,箍筋对于抗剪承载力影响较大;各国规范对UHPC梁的抗剪承载能力的计算较为保守。采用Mohr-Coulomb准则的计算结果较Rankine准则的计算结果与试验值更为接近;特别是小剪跨比的试验梁,处于弯剪复合状态,Mohr-Coulomb准则考虑了受压区UHPC法向和切向应力的影响,更为接近实际状况。  相似文献   

17.
采用未淡化的海砂制备超高性能混凝土(UHPC)和普通混凝土,研究了不同氯离子含量的海砂对UHPC抗压强度、孔结构、快速氯离子渗透性以及内置钢筋耐久性的影响,并与普通混凝土进行分析比较。结果表明,海砂中的氯离子含量对UHPC抗压强度并不会产生较大的消极影响;海砂UHPC的临界孔半径约为2 nm,与海砂普通混凝土不同,孔隙率随海砂中氯含量的增加而增加;即使海砂氯离子含量高达0.636%,海砂UHPC的氯离子渗透性仍可忽略不计;海砂UHPC中钢筋在28 d后处于钝化状态并趋于稳定。  相似文献   

18.
为研究UHPC矮肋桥面板的抗弯性能并验证其在多跨大跨连续梁中的适用性,以滨州黄河大桥为背景,提出两种UHPC矮肋板方案(平均板厚分别为16.4 cm和14.3 cm).首先建立实桥有限元模型,得到实际荷载作用下桥面板UHPC应力和栓钉剪力.接着,进行足尺抗弯试验,获得矮肋板从加载至破坏的过程中裂缝萌生与发展特征、荷载-位移曲线和应变分布规律等.试验表明,底部钢板的设置可以有效限制UHPC裂缝的发展,在钢板屈服前裂缝宽度呈线性发展;两种方案开裂应力分别为16.8 MPa和15.6 MPa,经过实桥有限元计算得到两种桥面板方案的纵向受力安全系数分别为2.2和1.5;钢板屈服后主裂缝迅速出现,最终桥面板纵肋受拉裂缝快速发展,顶面出现受压裂缝,认为试件破坏;然后,考虑UHPC材料受拉贡献,结合UHPC规范对结构抗弯承载能力进行验算,结果表明,当采用截面非线性方法并使用材料实际性能参数时,可以预测UHPC矮肋板的极限弯矩,计算值和试验值的比值分别为0.95和1.01.最终,对结构关键设计参数进行分析,结果表明,UHPC抗拉强度对极限弯矩的影响较小,增加钢板厚度是提高其极限弯矩的有效途径,窄而高的纵向加劲肋具有更高的受力效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号