共查询到16条相似文献,搜索用时 62 毫秒
1.
基于粒子群优化算法的模糊C-均值聚类 总被引:15,自引:0,他引:15
利用粒子群优化(PSO)算法全局寻优、 快速收敛的特点, 结合模糊C 均值(FCM)算法提出一种新的模糊聚类算法. 新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程, 使算法具有很强的全局搜索能力, 很大程度上避免了FCM算法易陷入局部极小的缺陷; 同时也降低了FCM算法对初始值的敏感度. 实验结果表明, 与FCM相比本文算法聚类更为准确, 效率更高. 相似文献
2.
李金霞 《南京邮电大学学报(自然科学版)》2009,9(19)
利用改进的自适应粒子群优化算法(APSO)较强全局寻优、快速收敛的特点和模糊C-均值算法(FCM)对初始值敏感、容易陷入局部最优的缺点,提出一种基于自适应粒子群优化算法的模糊聚类算法(APFM)。新算法有效的克服了FCM算法的缺点,同时增强了APSO算法全局搜索和跳出局部最优的能力。实验表明:新算法与单一的FCM和APSO算法相比聚类更准确,效率更高。 相似文献
3.
基于APSO的模糊聚类算法 总被引:1,自引:0,他引:1
利用改进的自适应粒子群优化算法(APSO)较强全局寻优、快速收敛的特点和模糊C-均值算法(FCM)对初始值敏感、容易陷入局部最优的缺点.提出一种基于自适应粒子群优化算法的模糊聚类算法(APFM).新算法有效的克服了FCM算法的缺点,同时增强了APSO算法全局搜索和跳出局部最优的能力.实验表明:新算法与单一的FCM和APSO算法相比聚类更准确,效率更高. 相似文献
4.
把免疫系统的免疫信息处理机制引入到粒子群优化(PSO)算法中,并与模糊C均值(FCM)算法相结合提出一种新的模糊聚类算法.新算法用免疫粒子群优化算法代替FCM算法的基于梯度下降的迭代过程,使算法具有较强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷,同时也降低了FCM算法对初始值的敏感度.采用对当基思想初始化种群,获得更优的初始候选解,提高算法聚类过程中的收敛速度.以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,该算法优于基于PSO的模糊C均值聚类算法和FCM算法. 相似文献
5.
把QPSO算法与模糊c-均值(FCM)算法相结合提出一种混合模糊聚类算法(QPSO—FCM),将FCM算法中基于梯度下降的迭代过程用新算法进行替代,能够在一定程度上克服FCM算法易陷入局部极小的缺陷,降低FCM算法的初值敏感度.通过典型的Wine的数据实验结果证明,改进后的新算法具有良好的收敛性,聚类效果也有一定的改善. 相似文献
6.
文章阐述了模糊C-均值聚类算法(FCM)原理及存在的缺点,通过将粒子群优化算法思想应用到模糊聚类算法中,对模糊聚类算法进行了优化设计.实验证明,改进的算法具有较好的全局最优解,克服了传统模糊C聚类算法的不足,聚类效果优于单一使用FCM算法. 相似文献
7.
提出基于混沌粒子群优化加权模糊聚类的旋转机械故障诊断算法。该算法用混沌粒子群算法取代传统的梯度下降法,优化加权模糊C-均值算法的各个参数,并依据聚类有效性指标确定最优聚类数及聚类中心。应用表明,混沌粒子群算法有效提高了模糊聚类分析的收敛速度和精度,提高了旋转机械故障诊断的准确率。 相似文献
8.
医学超声图像由于存在斑点噪声等模糊和不确定性的特点使得分割一直是一个难题。模糊C-均值聚类算法是一种结合无监督聚类和模糊集合概念的技术,广泛应用于图像分割,但存在着受初始聚类中心和目标函数高度非线性影响,极易收敛到局部极小的缺点。将集群智能的粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验结果表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 相似文献
9.
为解决传统模糊聚类迭代算法对初始化敏感,易陷入局部最优及处理高维数据时精度下降的问题,对基于马氏距离的模糊聚类算法(fuzzy c-means algorithm based on Mahalanobis distance,M-FCM)进行优化。将马氏距离代替欧氏距离,通过构造类内紧致度、类间分离度与类间清晰度结合的适应度函数,利用粒子群优化算法(particle swarm optimization,PSO)对马氏距离模糊聚类进行研究,提出了基于粒子群优化的马氏距离模糊聚类算法(Mahalanobis distance fuzzy clustering algorithm based on particle swarm optimization,DPSOM-FCM),并将此新算法与FCM(fuzzy c-means algorithm),M-FCM,PSO-FCM,IFPSOFCM(importance for fuzzy clustering algorithm based on particle swarm optimization)算法,在UCI(university of californiairvine)数据库的6个标准数据集上进行实验对比分析。结果表明,DPSOM-FCM算法具有算法收敛性和聚类有效性,并且聚类精确度优于其他算法,对高维数据的聚类识别能力强,即该算法具有全局优化作用。 相似文献
10.
针对非线性函数优化问题,提出一种新型的模糊粒子群算法.该算法基于模糊控制器中输入输出的模糊化处理和粒子群寻优的特点.算法在Matlab 2008环境下编程实现,针对几个典型复杂的非线性函数进行优化测试.实现结果表明:模糊粒子群算法是一种简单有效的算法,具有良好的有效性和鲁棒性. 相似文献
11.
针对图像分割特征具有交叉重叠现象、其类属的划分存在不确定性的分割问题,模糊聚类分割算法具有较强的优势,但其速度慢且容易陷入局部最优以及对初始值的设置敏感等问题.根据粒子群优化算法具有全局寻优能力,同时还具有较强的局部寻优能力,能更快收敛于最优解的特点,提出了一种基于粒子群的模糊聚类分割算法.实验证明,该算法相比传统的模糊聚类分割算法,具有更快的收敛速度和更高的分割精度. 相似文献
12.
针对现有基于改进的K-means模糊聚类的社区发现算法(k-means algorithm for community structures detection based on fuzzy clustering,NKFCM)执行效率较差的问题,将粒子群算法与模糊聚类算法相结合提出了基于粒子群优化与模糊聚类的社区发现算法(community detection algorithm based on particle swarm optimization and fuzzy clustering,PFCM).该算法首先进行迭代运算,找出初始聚类核心,利用以云模型为运行条件的粒子群优化算法确定最优聚类核心与最佳社区个数,最后利用模糊聚类算法(fuzzy c-means algorithm,FCM)进行具体的社区划分.理论解析与测试结果表明:该算法发现网络社区的准确性较高,且与NKFCM算法相比,PFCM在处理网络数据时执行效率获得了极大地提升. 相似文献
13.
基于粒子群优化和SOM网络的聚类算法研究 总被引:2,自引:0,他引:2
利用改进的粒子群优化算法(PSO)的优化性能,结合SOM网络模型,提出了一种基于粒子群优化算法和SOM网络的聚类算法(PSO/SOM),使用PSO对SOM网络进行训练来代替SOM的启发式训练方法.将PSO/SOM算法用于对Wine和Iris等数据集进行模式聚类识别,可以得到较优的聚类识别效果.相比标准SOM算法能有效提高网络映射的准确程度,降低网络的量化误差和拓扑误差,同时也降低了错聚率,实验结果验证了本算法的有效性. 相似文献
14.
模糊c均值聚类算法(FCM)由于样本模糊隶属度归一性的约束,导致FCM算法对噪声数据敏感。提出松弛模糊C均值聚类算法(RFCM),RFCM算法在可能性c均值聚类算法(PCM)目标函数的基础上,放弃了FCM算法单个样本模糊隶属度归一化约束,转为n个样本模糊隶属度之和为n的约束,并利用粒子群算法对样本模糊隶属度进行优化估计,使得模糊指标可拓展为m>0的情况,同时采用梯度法得到RFCM算法聚类中心迭代公式。RFCM理论分析了算法对噪声数据抗噪的原理,解释了RFCM算法模糊指标m>0的合理性,讨论了RFCM算法的收敛性。基于gauss数据集和UCI数据集的仿真测试验证了所提出算法的有效性。 相似文献
15.
王浩 《阜阳师范学院学报(自然科学版)》2010,27(2):23-27
离散型粒子群优化(DPSO)算法具有收敛速度快、参数少、能够适用于动态环境的能力等优点。借鉴已有的基于粒子群算法的分类系统,以离散型PSO为基础构建分类系统,在操作的过程中使用变长的方法来表示粒子,对法则集进行合理的表示并进行适当的删减,使用预设法则来提高分类效果等。通过实验证明,系统能够正确对法则进行删减并使用较少的法则数目达到理想的分类准确率,该分类系统具有较好的性能。 相似文献
16.
一种改进的模糊C-均值(FCM)聚类算法 总被引:9,自引:1,他引:9
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 相似文献