首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Superoxide dismutase, catalase and methional proved capable of inhibiting the microsomal oxidation of thiobenzamide, which is most probably catalyzed by the flavin-containing monooxygenase. This indicates that excited oxygen species (e. g.·O 2 , H2O2, ·OH) are involved in the catalytic cycle of this enzymatic reaction. CO, which inhibits the cytochrome P-450-dependent oxygen radical formation, had no effect on the oxidation reaction, suggesting that the source of the reactive oxygen species is not the microsomal mixed-function oxidase.  相似文献   

2.
Betel quid (BQ) chewing shows a strong correlation to the incidence of oral submucous fibrosis (OSF), leukoplakia and oral cancer. BQ contains mainly areca nut, lime, Piper betle leaf (PBL) and the inflorescence of P. betle (IPB). Hydroxychavicol (4-allyl-catechol, HC), as a major phenolic compound in PBL and IPB, is shown to induce oxidative stress, glutathione (GSH) depletion and cell cycle deregulation. Using bivariate BrdU/PI flow cytometry, KB cells in DNA synthesis (S phase) are shown to be sensitive to the toxic effect of HC and show cell cycle arrest and apoptosis following exposure to 0.1 and 0.3 mM HC. HC-induced apoptosis and cell cycle arrest are associated with mitochondrial membrane potential (m) depolarization as revealed by a decrease in rhodamine fluorescence. N-acetyl-L-cysteine (1 mM), superoxide dismutase (100 U/ml) and catalase (1000 U/ml) were effective in prevention of HC-induced GSH depletion (as indicated by chloromethylfluorescein fluorescence), reactive oxygen species (ROS) production (by dichlorofluorescein fluorescence), cell cycle arrest and apoptosis. However, dimethylthiourea (2 mM), neocuproine (1 mM), 1,10-phenanthroline (200 M) and desferrioxamine (0.5 mM) showed little effect on HC-induced cell changes. HC elevated the cellular and mitochondrial GSH levels at moderate concentrations (0.05–0.1 mM), whereas at a concentration of 0.3 mM, inhibitory effects were noted. These results indicate that HC consumption may be associated with BQ-chewing-related oral mucosal diseases via GSH depletion, ROS production, mitochondrial dysfunction, cell cycle disturbance and the induction of apoptosis. These events are related to the production of superoxide radicals and hydrogen peroxide.Received 9 July 2003; received after revision 28 September 2003; accepted 24 October 2003  相似文献   

3.
Heme peroxidases and catalases are key enzymes of hydrogen peroxide metabolism and signaling. Here, the reconstruction of the molecular evolution of the peroxidase–catalase superfamily (annotated in pfam as PF00141) based on experimentally verified as well as numerous newly available genomic sequences is presented. The robust phylogenetic tree of this large enzyme superfamily was obtained from 490 full-length protein sequences. Besides already well-known families of heme b peroxidases arranged in three main structural classes, completely new (hybrid type) peroxidase families are described being located at the border of these classes as well as forming (so far missing) links between them. Hybrid-type A peroxidases represent a minor eukaryotic subfamily from Excavates, Stramenopiles and Rhizaria sharing enzymatic and structural features of ascorbate and cytochrome c peroxidases. Hybrid-type B peroxidases are shown to be spread exclusively among various fungi and evolved in parallel with peroxidases in land plants. In some ascomycetous hybrid-type B peroxidases, the peroxidase domain is fused to a carbohydrate binding (WSC) domain. Both here described hybrid-type peroxidase families represent important turning points in the complex evolution of the whole peroxidase–catalase superfamily. We present and discuss their phylogeny, sequence signatures and putative biological function.  相似文献   

4.
5.
M Younes 《Experientia》1985,41(4):479-481
Superoxide dismutase, catalase and methional proved capable of inhibiting the microsomal oxidation of thiobenzamide, which is most probably catalyzed by the flavin-containing monooxygenase. This indicates that excited oxygen species (e.g. X O-2,H2O2, X OH) are involved in the catalytic cycle of this enzymatic reaction. CO, which inhibits the cytochrome P-450-dependent oxygen radical formation, had no effect on the oxidation reaction, suggesting that the source of the reactive oxygen species is not the microsomal mixed-function oxidase.  相似文献   

6.
The so-called reactive oxygen species (ROS) are defined as oxygen-containing species that are more reactive than O(2) itself, which include hydrogen peroxide and superoxide. Although these are quite stable, they may be converted in the presence of transition metal ions, such as Fe(II), to the highly reactive oxygen species (hROS). hROS may exist as free hydroxyl radicals (HO·), as bound ("crypto") radicals or as Fe(IV)-oxo (ferryl) species and the somewhat less reactive, non-radical species, singlet oxygen. This review outlines the processes by which hROS may be formed, their damaging potential, and the evidence that they might have signaling functions. Since our understanding of the formation and actions of hROS depends on reliable procedures for their detection, particular attention is given to procedures for hROS detection and quantitation and their applicability to in vivo studies.  相似文献   

7.
Genome clones and expressed sequence tags (ESTs) from the ascidian Ciona intestinalis and from the larvacean Oikopleura dioica were analysed for the presence of lysozyme-encoding genes. Two genes were found to potentially code for goose-type lysozymes in Oikopleura, while three or possibly more g-type proteins form the lysozyme complement of C. intestinalis, and at least one of these genes from each species is expressed based on EST data. No genes for chicken- or invertebrate-type lysozymes were found in either urochordate species. Consistent with this finding, extracts of Oikopleura animals possessed hydrolysing activity on bacterial cell walls, and this activity was not inhibited in the presence of a known inhibitor of chicken-type lysozyme. A wide range of isoelectric points for the predicted lysozymes from Ciona (pI 4.4, 6.4 and 9.9) and from Oikopleura (pI 5.0 and 8.0) suggests tissue-specific adaptations as well as specific functional roles of the lysozymes. Comparisons of gene structures, encoded sequences, cysteine residue content and their positions in the proteins indicate that the g-type lysozymes of Ciona intestinalis are more closely related to those of vertebrates than are the g-type lysozymes of Oikopleura. Multiple genes from each species may result from separate and lineage-specific duplications followed by functional specialisation.Received 29 June 2003; received after revision 24 July 2003; accepted 29 July 2003  相似文献   

8.
The deep-sea clams Calyptogena nautilei and C. tsubasa, which live in the cold-seep area at a depth of 3570 m in the Nankai Trough, Japan, have abundant hemoglobins (Hbs) in erythrocytes, similar to other Calyptogena species. We determined the cDNA-derived amino acid sequences of Hbs from two Calyptogena species. C. tsubasa was found to contain two dimeric Hbs, Hb I consisting of 145 amino acid residues and Hb II with 137 residues, similar to known Hbs from C. soyoae and C. kaikoi. Sequence identity was over 90% among the orthologous chains of Calyptogena Hbs. On the other hand, surprisingly, C. nautilei contained two monomeric Hbs, Hb III containing 141 residues and Hb IV with 134 residues. In addition, Hbs III and IV showed only 33–42% sequence identity with Hbs I and II from other Calyptogena species. The distal (E7) histidine, one of the functionally important residues of the heme protein, is replaced by glutamine in all Hb chains of Calyptogena species. A phylogenetic analysis indicated that C. nautilei Hb III is closer to Hb I from other Calyptogena species. We suppose that a Hb gene was duplicated at least three times in an immediate ancestor of Calyptogena and, presumably depending on physiological conditions different Hb sets are being expressed: dimeric Hbs I and II in C. soyoae, C. kaikoi and C. tsubasa, and monomeric Hbs III and IV in C. nautilei. Received 13 May 2003; received after revision 5 June 2003; accepted 12 June 2003  相似文献   

9.
Depending on the availability of suitable reducing agents, alloxan can be either a prooxidant or an antioxidant. Alloxan and its reduced derivative, dialuric acid, act as a redox couple, driven by reduced glutathione (GSH) or L-cysteine, generating in vitro in the presence of oxygen, both superoxide radical and hydrogen peroxide. The production of superoxide radicals was shown by the appearance of lucigenin chemiluminescence (CL) as well as by the generation of formazan from nitroblue tetrazolium (NBT). The lucigenin CL as well as the NBT reduction was inhibited by superoxide dismutase and partially by catalase. Melatonin inhibited alloxan-mediated CL. In contrast, in the absence of reducing agents, alloxan is a scavenger of superoxide radicals formed by other reactions. Because of the high content of reducing compounds in the cell (e.g. glutathione), it is suggested that alloxan acts in vivo mainly as a generator of reactive oxygen species. Received 9 November 1998; received after revision 15 January 1999; accepted 15 January 1999  相似文献   

10.
Suppression subtractive hybridization performed on Down syndrome (DS) versus control fetal brains revealed differential expression of peroxiredoxin 2 (PRDX2), mapped at 13q12. Peroxiredoxins are antioxidant enzymes involved in protein and lipid protection against oxidative injury and in cellular signalling pathways regulating apoptosis. The under-expression of PRDX2 observed in DS samples was confirmed by realtime PCR (0.73-fold). To test whether decreased expression is associated with enhanced sensitivity of DS neurons to reactive oxygen species, we down-regulated PRDX2 through stable transfections of SH-SY5Y neuroblastoma cells with antisense contructs of the complete PRDX2 coding sequence. In addition, we over-expressed SOD1 and compared the effects of the two genes on cell viability. Cells transfected with either construct showed similar sensitivity to oxidative stress in addition to increased apoptosis under basal conditions and after treatment with oxidative cytotoxic agents. This suggests that the decreased expression of PRDX2 may contribute to the altered redox state in DS at levels comparable to that of the increased expression of SOD1.Received 4 February 2003; received after revision 31 March 2003; accepted 25 April 2003  相似文献   

11.
Controlling iron/oxygen chemistry in biology depends on multiple genes, regulatory messenger RNA (mRNA) structures, signaling pathways and protein catalysts. Ferritin, a protein nanocage around an iron/oxy mineral, centralizes the control. Complementary DNA (antioxidant responsive element/Maf recognition element) and mRNA (iron responsive element) responses regulate ferritin synthesis rates. Multiple iron-protein interactions control iron and oxygen substrate movement through the protein cage, from dynamic gated pores to catalytic sites related to di-iron oxygenase cofactor sites. Maxi-ferritins concentrate iron for the bio-synthesis of iron/heme proteins, trapping oxygen; bacterial mini-ferritins, DNA protection during starvation proteins, reverse the substrate roles, destroying oxidants, trapping iron and protecting DNA. Ferritin is nature’s unique and conserved approach to controlled, safe use of iron and oxygen, with protein synthesis in animals adjusted by dual, genetic DNA and mRNA sequences that selectively respond to iron or oxidant signals and link ferritin to proteins of iron, oxygen and antioxidant metabolism. Received 25 June 2005; received after revision 17 October 2005; accepted 25 November 2005  相似文献   

12.
Starch-binding domains in the post-genome era   总被引:1,自引:1,他引:0  
Starch belongs to the most abundant biopolymers on Earth. As a source of energy, starch is degraded by a large number of various amylolytic enzymes. However, only about 10% of them are capable of binding and degrading raw starch. These enzymes usually possess a distinct sequence-structural module, the so-called starchbinding domain (SBD). In general, all carbohydrate-binding modules (CBMs) have been classified into the CBM families. In this sequence-based classification the individual types of SBDs have been placed into seven CBM families: CBM20, CBM21, CBM25, CBM26, CBM34, CBM41 and CBM45. The family CBM20, known also as a classical C-terminal SBD of microbial amylases, is the most thoroughly studied. The three-dimensional structures have already been determined by X-ray crystallography or nuclear magnetic resonance for SBDs from five CBM families (20, 25, 26, 34 and 41), and the structure of the CBM21 has been modelled. Despite differences among the amino acid sequences, the fold of a distorted β-barrel seems to be conserved together with a similar way of substrate binding (mainly stacking interactions between aromatic residues and glucose rings). SBDs have recently been discovered in many non-amylolytic proteins. These may, for example, have regulatory functions in starch metabolism in plants or glycogen metabolism in mammals. SBDs have also found practical uses. Received 25 May 2006; received after revision 26 June 2006; accepted 3 August 2006  相似文献   

13.
A simple, sensitive, non-stimulated assay was developed to measure the superoxide anion concentration in whole blood, using an ultra-sensitive chemiluminescence (CL) analyzer, and lucignin amplification. The assay system can be performed without leukocyte isolation or stimulant administration. The blood CL levels of healthy males (362.8±337.7 counts/10 sec) were not different from those of females (335±308.7 counts/10 sec) (p=0.64), whereas the CL levels in whole blood in patients with acute pancreatitis (2522±2014 counts/10 sec) were significantly higher than those of healthy controls (p<0.001). This assay system may be valuable in the future for quantitative measurement of reactive oxygen species in various disorders.  相似文献   

14.
SH-SY5Y neuroblastoma cells were cultured for up to three serial passages in the presence of the copper chelator triethylene tetramine (Trien). The copper-depleted neuroblastoma cell line obtained showed decreased activities of the copper enzymes Cu, Zn superoxide dismutase and cytochrome c oxidase with concomitant increases in reactive oxygen species. Mitochondrial antioxidants (Mn superoxide dismutase and Bcl-2) were up-regulated. Overexpression and activation of p53 were early responses, leading to an increase in p21. Eventually, copper-depleted cells detached from the monolayer and underwent apoptosis. Activation of up-stream caspase-9, but not caspase-8, suggested that apoptosis proceeds via a mitochondrial pathway, followed by caspase-3 activation. The addition of copper sulfate to the copper-depleted cells restored copper enzymes, normalized antioxidant levels and improved cell viability. We conclude that prolonged copper starvation in these replicating cells leads to mitochondrial damage and oxidative stress and ultimately, apoptosis.Received 24 April 2003; accepted 23 May 2003  相似文献   

15.
According to the widely acknowledged mitochondrial free radical theory of aging (MFRTA), the macromolecular damage that results from the production of toxic reactive oxygen species (ROS) during cellular respiration is the cause of aging. However, although it is clear that oxidative damage increases during aging, the fundamental question regarding whether mitochondrial oxidative stress is in any way causal to the aging process remains unresolved. An increasing number of studies on long-lived vertebrate species, mutants and transgenic animals have seriously challenged the pervasive MFRTA. Here, we describe some of these new results, including those pertaining to the phenotype of the long-lived Mclk1 +/− mice, which appear irreconcilable with the MFRTA. Thus, we believe that it is reasonable to now consider the MFRTA as refuted and that it is time to use the insight gained by many years of testing this theory to develop new views as to the physiological causes of aging.  相似文献   

16.
This study compares functional and morphological alterations caused by application of alloxan, streptozotocin, xanthine oxidase/hypoxanthine (generation of reactive oxygen species), or S-nitroso-N-acetyl-D,L-penicillamine (SNAP, liberation of nitric oxide) to isolated rat pancreatic islets in vitro. In perifusion experiments, membrane leakage—detected by non-stimulated insulin release—was found after application of all drugs, but showed a substance-specific time pattern. Twenty-four hours after application of the classical diabetogens (alloxan or streptozotocin), potassium chloride- and glucose-stimulated insulin secretion were markedly reduced, while a persistent reduction was observed neither after exposure to xanthine oxidase/hypoxanthine, nor to SNAP. Morphological analysis of the islets revealed that nearly all β-cells were destroyed following alloxan or streptozotocin treatment, while the majority of β-cells were configured regularly after application of xanthine oxidase/hypoxanthine or SNAP. Necrotic cells found after xanthine oxidase/hypoxanthine usually differed in morphology from those observed after application of the classical diabetogens. While the former cells were characterised by swollen nuclei, the latter had shrunken nuclei with irregular condensed chromatin. Apoptosis was found only following nitric oxide exposure. Due to these differences, it seems unlikely that alloxan, streptozotocin, xanthine oxidase/hypoxanthine, and nitric oxide have a common major feature in their toxic action. Received 16 September 1999; received after revision 15 November 1999; accepted 26 November 1999  相似文献   

17.
The means by which oxygen intervenes in gene expression has been examined in considerable detail in the metabolically versatile bacterium Rhodobacter sphaeroides. Three regulatory systems are now known in this organism, which are used singly and in combination to modulate genes in response to changing oxygen availability. The outcome of these regulatory events is that the molecular machinery is present for the cell to obtain energy by means that are best suited to prevailing conditions, while at the same time maintaining cellular redox balance. Here, we explore the dangers associated with molecular oxygen relative to the various metabolisms used by R. sphaeroides, and then present the most recent findings regarding the features and operation of each of the three regulatory systems which collectively mediate oxygen control in this organism.Received 26 June 2003; received after revision 30 July 2003; accepted 8 August 2003  相似文献   

18.
Inflammatory reactions to ssRNA viruses are induced by the endosomal Toll-like receptors (TLRs) 7 and 8. TLR7/8-mediated inflammatory reaction results in activation of the Nalp3 inflammasome via an unknown mechanism. Here we report for the first time that TLR7/8 mediate activation of xanthine oxidase (XOD) in an HIF-1α-dependent manner. XOD produces uric acid and reactive oxygen species, which could activate Nalp3 and therefore induce activation of caspase 1, known to convert inactive pro-IL-1β into active IL-1β. Specific inhibition of the XOD activity attenuates TLR7/8-mediated activation of caspase 1 and IL-1β release. These results were obtained using human THP-1 myeloid macrophages. The findings were verified by conducting in vivo experiments on mice.  相似文献   

19.
The structures of the class C -lactamase from Enterobacter cloacae 908R alone and in complex with a boronic acid transition-state analogue were determined by X-ray crystallography at 2.1 and 2.3 Å, respectively. The structure of the enzyme resembles those of other class C -lactamases. The structure of the complex with the transition-state analogue, iodo-acetamido-phenyl boronic acid, shows that the inhibitor is covalently bound to the active-site serine (Ser64). Binding of the inhibitor within the active site is compared with previously determined structures of complexes with other class C enzymes. The structure of the boronic acid adduct indicates ways to improve the affinity of this class of inhibitors. This structure of 908R class C -lactamase in complex with a transition-state analogue provides further insights into the mechanism of action of these hydrolases.Received 16 May 2003; accepted 4 June 2003  相似文献   

20.
Members of the odorant-binding protein (OBP) and chemosensory protein (CSP) families were identified and characterised in the sensory tissues of the social wasp Polistes dominulus (Hymenoptera: Vespidae). Unlike most insects so far investigated, OBPs were detected in antennae, legs and wings, while CSPs appeared to be preferentially expressed in the antennae. The OBP is very different from the homologous proteins of other Hymenopteran species, with around 20% of identical residues, while the CSP appears to be much better conserved. Both OBP and CSP, not showing other post-translational modifications apart from disulphide bridges, were expressed with high yields in a bacterial system. Cysteine pairing in the recombinant and native proteins follows the classical arrangements described for other members of these classes of proteins. OBPs isolated from the wings were found to be associated with a number of long-chain aliphatic amides and other small organic molecules. Binding of these ligands and other related compounds was measured for both recombinant OBP and CSP.Received 14 May 2003; received after revision 8 June 2003; accepted 12 June 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号