首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia   总被引:19,自引:0,他引:19  
Seven Fanconi anemia-associated proteins (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG and FANCL) form a nuclear Fanconi anemia core complex that activates the monoubiquitination of FANCD2, targeting FANCD2 to BRCA1-containing nuclear foci. Cells from individuals with Fanconi anemia of complementation groups D1 and J (FA-D1 and FA-J) have normal FANCD2 ubiquitination. Using genetic mapping, mutation identification and western-blot data, we identify the defective protein in FA-J cells as BRIP1 (also called BACH1), a DNA helicase that is a binding partner of the breast cancer tumor suppressor BRCA1.  相似文献   

2.
3.
The protein predicted to be defective in individuals with Fanconi anemia complementation group J (FA-J), FANCJ, is a missing component in the Fanconi anemia pathway of genome maintenance. Here we identify pathogenic mutations in eight individuals with FA-J in the gene encoding the DEAH-box DNA helicase BRIP1, also called FANCJ. This finding is compelling evidence that the Fanconi anemia pathway functions through a direct physical interaction with DNA.  相似文献   

4.
Fanconi anemia is a genetic disease characterized by genomic instability and cancer predisposition. Nine genes involved in Fanconi anemia have been identified; their products participate in a DNA damage-response network involving BRCA1 and BRCA2 (refs. 2,3). We previously purified a Fanconi anemia core complex containing the FANCL ubiquitin ligase and six other Fanconi anemia-associated proteins. Each protein in this complex is essential for monoubiquitination of FANCD2, a key reaction in the Fanconi anemia DNA damage-response pathway. Here we show that another component of this complex, FAAP250, is mutant in individuals with Fanconi anemia of a new complementation group (FA-M). FAAP250 or FANCM has sequence similarity to known DNA-repair proteins, including archaeal Hef, yeast MPH1 and human ERCC4 or XPF. FANCM can dissociate DNA triplex, possibly owing to its ability to translocate on duplex DNA. FANCM is essential for monoubiquitination of FANCD2 and becomes hyperphosphorylated in response to DNA damage. Our data suggest an evolutionary link between Fanconi anemia-associated proteins and DNA repair; FANCM may act as an engine that translocates the Fanconi anemia core complex along DNA.  相似文献   

5.
6.
Fanconi anemia is associated with a defect in the BRCA2 partner PALB2   总被引:1,自引:0,他引:1  
The Fanconi anemia and BRCA networks are considered interconnected, as BRCA2 gene defects have been discovered in individuals with Fanconi anemia subtype D1. Here we show that a defect in the BRCA2-interacting protein PALB2 is associated with Fanconi anemia in an individual with a new subtype. PALB2-deficient cells showed hypersensitivity to cross-linking agents and lacked chromatin-bound BRCA2; these defects were corrected upon ectopic expression of PALB2 or by spontaneous reversion.  相似文献   

7.
Fanconi anemia is a rare recessive disorder characterized by genome instability, congenital malformations, progressive bone marrow failure and predisposition to hematologic malignancies and solid tumors. At the cellular level, hypersensitivity to DNA interstrand crosslinks is the defining feature in Fanconi anemia. Mutations in thirteen distinct Fanconi anemia genes have been shown to interfere with the DNA-replication-dependent repair of lesions involving crosslinked DNA at stalled replication forks. Depletion of SLX4, which interacts with multiple nucleases and has been recently identified as a Holliday junction resolvase, results in increased sensitivity of the cells to DNA crosslinking agents. Here we report the identification of biallelic SLX4 mutations in two individuals with typical clinical features of Fanconi anemia and show that the cellular defects in these individuals' cells are complemented by wildtype SLX4, demonstrating that biallelic mutations in SLX4 (renamed here as FANCP) cause a new subtype of Fanconi anemia, Fanconi anemia-P.  相似文献   

8.
X-linked inheritance of Fanconi anemia complementation group B   总被引:20,自引:0,他引:20  
Fanconi anemia is an autosomal recessive syndrome characterized by diverse clinical symptoms, hypersensitivity to DNA crosslinking agents, chromosomal instability and susceptibility to cancer. Fanconi anemia has at least 11 complementation groups (A, B, C, D1, D2, E, F, G, I, J, L); the genes mutated in 8 of these have been identified. The gene BRCA2 was suggested to underlie complementation group B, but the evidence is inconclusive. Here we show that the protein defective in individuals with Fanconi anemia belonging to complementation group B is an essential component of the nuclear protein 'core complex' responsible for monoubiquitination of FANCD2, a key event in the DNA-damage response pathway associated with Fanconi anemia and BRCA. Unexpectedly, the gene encoding this protein, FANCB, is localized at Xp22.31 and subject to X-chromosome inactivation. X-linked inheritance has important consequences for genetic counseling of families with Fanconi anemia belonging to complementation group B. Its presence as a single active copy and essentiality for a functional Fanconi anemia-BRCA pathway make FANCB a potentially vulnerable component of the cellular machinery that maintains genomic integrity.  相似文献   

9.
DNA interstrand crosslink repair requires several classes of proteins, including structure-specific endonucleases and Fanconi anemia proteins. SLX4, which coordinates three separate endonucleases, was recently recognized as an important regulator of DNA repair. Here we report the first human individuals found to have biallelic mutations in SLX4. These individuals, who were previously diagnosed as having Fanconi anemia, add SLX4 as an essential component to the FA-BRCA genome maintenance pathway.  相似文献   

10.
Song XJ  Huang W  Shi M  Zhu MZ  Lin HX 《Nature genetics》2007,39(5):623-630
Grain weight is one of the most important components of grain yield and is controlled by quantitative trait loci (QTLs) derived from natural variations in crops. However, the molecular roles of QTLs in the regulation of grain weight have not been fully elucidated. Here, we report the cloning and characterization of GW2, a new QTL that controls rice grain width and weight. Our data show that GW2 encodes a previously unknown RING-type protein with E3 ubiquitin ligase activity, which is known to function in the degradation by the ubiquitin-proteasome pathway. Loss of GW2 function increased cell numbers, resulting in a larger (wider) spikelet hull, and it accelerated the grain milk filling rate, resulting in enhanced grain width, weight and yield. Our results suggest that GW2 negatively regulates cell division by targeting its substrate(s) to proteasomes for regulated proteolysis. The functional characterization of GW2 provides insight into the mechanism of seed development and is a potential tool for improving grain yield in crops.  相似文献   

11.
The gene MID1, the mutation of which causes X-linked Opitz G/BBB syndrome (OS, MIM 300000), encodes a microtubule-associated protein (MAP). We show that mutation of MID1 leads to a marked accumulation of the catalytic subunit of protein phosphatase 2A (PP2Ac), a central cellular regulator. PP2Ac accumulation is caused by an impairment of a newly identified E3 ubiquitin ligase activity of the MID1 protein that normally targets PP2Ac for degradation through binding to its alpha4 regulatory subunit in an embryonic fibroblast line derived from a fetus with OS. Elevated PP2Ac causes hypophosphorylation of MAPs, a pathological mechanism that is consistent with the OS phenotype.  相似文献   

12.
PALB2 was recently identified as a nuclear binding partner of BRCA2. Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies. We identified pathogenic mutations in PALB2 (also known as FANCN) in seven families affected with Fanconi anemia and cancer in early childhood, demonstrating that biallelic PALB2 mutations cause a new subtype of Fanconi anemia, FA-N, and, similar to biallelic BRCA2 mutations, confer a high risk of childhood cancer.  相似文献   

13.
We identified constitutional truncating mutations of the BRCA1-interacting helicase BRIP1 in 9/1,212 individuals with breast cancer from BRCA1/BRCA2 mutation-negative families but in only 2/2,081 controls (P = 0.0030), and we estimate that BRIP1 mutations confer a relative risk of breast cancer of 2.0 (95% confidence interval = 1.2-3.2, P = 0.012). Biallelic BRIP1 mutations were recently shown to cause Fanconi anemia complementation group J. Thus, inactivating truncating mutations of BRIP1, similar to those in BRCA2, cause Fanconi anemia in biallelic carriers and confer susceptibility to breast cancer in monoallelic carriers.  相似文献   

14.
The evolutionarily conserved SLX4 protein, a key regulator of nucleases, is critical for DNA damage response. SLX4 nuclease complexes mediate repair during replication and can also resolve Holliday junctions formed during homologous recombination. Here we describe the phenotype of the Btbd12 knockout mouse, the mouse ortholog of SLX4, which recapitulates many key features of the human genetic illness Fanconi anemia. Btbd12-deficient animals are born at sub-Mendelian ratios, have greatly reduced fertility, are developmentally compromised and are prone to blood cytopenias. Btbd12(-/-) cells prematurely senesce, spontaneously accumulate damaged chromosomes and are particularly sensitive to DNA crosslinking agents. Genetic complementation reveals a crucial requirement for Btbd12 (also known as Slx4) to interact with the structure-specific endonuclease Xpf-Ercc1 to promote crosslink repair. The Btbd12 knockout mouse therefore establishes a disease model for Fanconi anemia and genetically links a regulator of nuclease incision complexes to the Fanconi anemia DNA crosslink repair pathway.  相似文献   

15.
BRIP1 (also called BACH1) is a DEAH helicase that interacts with the BRCT domain of BRCA1 (refs. 1-6) and has an important role in BRCA1-dependent DNA repair and checkpoint functions. We cloned the chicken ortholog of BRIP1 and established a homozygous knockout in the avian B-cell line DT40. The phenotype of these brip1 mutant cells in response to DNA damage differs from that of brca1 mutant cells and more closely resembles that of fancc mutant cells, with a profound sensitivity to the DNA-crosslinking agent cisplatin and acute cell-cycle arrest in late S-G2 phase. These defects are corrected by expression of human BRIP1 lacking the BRCT-interaction domain. Moreover, in human cells exposed to mitomycin C, short interfering RNA-mediated knock-down of BRIP1 leads to a substantial increase in chromosome aberrations, a characteristic phenotype of cells derived from individuals with Fanconi anemia. Because brip1 mutant cells are proficient for ubiquitination of FANCD2 protein, our data indicate that BRIP1 has a function in the Fanconi anemia pathway that is independent of BRCA1 and downstream of FANCD2 activation.  相似文献   

16.
The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM   总被引:19,自引:0,他引:19  
Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder with locus heterogeneity. None of the 'responsible' genes have previously been identified. Some BBS cases (approximately 10%) remain unassigned to the five previously mapped loci. McKusick-Kaufma syndrome (MKS) includes hydrometrocolpos, postaxial polydactyly and congenital heart disease, and is also inherited in an autosomal recessive manner. We ascertained 34 unrelated probands with classic features of BBS including retinitis pigmentosa (RP), obesity and polydactyly. The probands were from families unsuitable for linkage because of family size. We found MKKS mutations in four typical BBS probands (Table 1). The first is a 13-year-old Hispanic girl with severe RP, PAP, mental retardation and obesity (BMI >40). She was a compound heterozygote for a missense (1042GA, G52D) and a nonsense (1679TA, Y264stop) mutation in exon 3. Cloning and sequencing of the separate alleles confirmed that the mutations were present in trans. A second BBS proband (from Newfoundland), born to consanguineous parents, was homozygous for two deletions (1316delC and 1324-1326delGTA) in exon 3, predicting a frameshift. An affected brother was also homozygous for the deletions, whereas an unaffected sibling had two normal copies of MKKS. Both the proband and her affected brother had RP, PAP, mild mental retardation, morbid obesity (BMI >50 and 37, respectively), lobulated kidneys with prominent calyces and diabetes mellitus (diagnosed at ages 33 and 30, respectively). A deceased sister (DNA unavailable) had similar phenotypic features (RP with blindness by age 13, BMI >45, abnormal glucose tolerance test and IQ=64, vaginal atresia and syndactyly of both feet). Both parents and the maternal grandfather were heterozygous for the deletions. Genotyping with markers from the MKKS region confirmed homozygosity at 20p12 in both affected individuals.  相似文献   

17.
18.
Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase   总被引:43,自引:0,他引:43  
Autosomal recessive juvenile parkinsonism (AR-JP), one of the most common familial forms of Parkinson disease, is characterized by selective dopaminergic neural cell death and the absence of the Lewy body, a cytoplasmic inclusion body consisting of aggregates of abnormally accumulated proteins. We previously cloned PARK2, mutations of which cause AR-JP (ref. 2), but the function of the gene product, parkin, remains unknown. We report here that parkin is involved in protein degradation as a ubiquitin-protein ligase collaborating with the ubiquitin-conjugating enzyme UbcH7, and that mutant parkins from AR-JP patients show loss of the ubiquitin-protein ligase activity. Our findings indicate that accumulation of proteins that have yet to be identified causes a selective neural cell death without formation of Lewy bodies. Our findings should enhance the exploration of the molecular mechanisms of neurodegeneration in Parkinson disease as well as in other neurodegenerative diseases that are characterized by involvement of abnormal protein ubiquitination, including Alzheimer disease, other tauopathies, CAG triplet repeat disorders and amyotrophic lateral sclerosis.  相似文献   

19.
X-linked mental retardation (XLMR) is an inherited condition that causes failure to develop cognitive abilities, owing to mutations in a gene on the X chromosome. The latest XLMR update lists up to 136 conditions leading to 'syndromic', or 'specific', mental retardation (MRXS) and 66 entries leading to 'nonspecific' mental retardation (MRX). For 9 of the 66 MRX entries, the causative gene has been identified. Our recent discovery of the contiguous gene deletion syndrome ATS-MR (previously known as Alport syndrome, mental retardation, midface hypoplasia, elliptocytosis, OMIM #300194), characterized by Alport syndrome (ATS) and mental retardation (MR), indicated Xq22.3 as a region containing one mental retardation gene. Comparing the extent of deletion between individuals with ATS-MR and individuals with ATS alone allowed us to define a critical region for mental retardation of approximately 380 kb, containing four genes. Here we report the identification of two point mutations, one missense and one splice-site change, in the gene FACL4 in two families with nonspecific mental retardation. Analysis of enzymatic activity in lymphoblastoid cell lines from affected individuals of both families revealed low levels compared with normal cells, indicating that both mutations are null mutations. All carrier females with either point mutations or genomic deletions in FACL4 showed a completely skewed X-inactivation, suggesting that the gene influences survival advantage. FACL4 is the first gene shown to be involved in nonspecific mental retardation and fatty-acid metabolism.  相似文献   

20.
Hallervorden-Spatz syndrome (HSS) is an autosomal recessive neurodegenerative disorder associated with iron accumulation in the brain. Clinical features include extrapyramidal dysfunction, onset in childhood, and a relentlessly progressive course. Histologic study reveals iron deposits in the basal ganglia. In this respect, HSS may serve as a model for complex neurodegenerative diseases, such as Parkinson disease, Alzheimer disease, Huntington disease and human immunodeficiency virus (HIV) encephalopathy, in which pathologic accumulation of iron in the brain is also observed. Thus, understanding the biochemical defect in HSS may provide key insights into the regulation of iron metabolism and its perturbation in this and other neurodegenerative diseases. Here we show that HSS is caused by a defect in a novel pantothenate kinase gene and propose a mechanism for oxidative stress in the pathophysiology of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号