首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
多指标约束下舰载装备维修级别建模与优化   总被引:2,自引:0,他引:2  
修理级别分析(level of repair analysis, LORA)是装备综合保障性工程中的一项重要内容,针对现有关于LORA问题研究的不完善之处,以舰载装备维修保障为背景,综合考虑维修费用和维修效果,建立LORA协同规划数学模型。根据模糊优选理论,给出基于正负理想方案的多指标LORA决策隶属度优化目标函数,运用自适应粒子群算法对LORA模型进行求解,通过算例给出了优化结果,分析LORA决策的一般规律,证明方法的合理性及LORA模型的正确性。提出的LORA决策模型是现有研究基础上的重要补充,对于完善装备维修保障决策理论具有重要意义,为装备维修保障工作的开展提供决策支持。  相似文献   

2.
求解动态优化问题的分叉PSO算法   总被引:1,自引:1,他引:0  
近些年来,求解动态环境中的优化问题已经逐渐成为进化计算领域的一个新的研究热点。为了改善一般PSO算法求解这种动态优化问题的能力,现提出了一种采用分叉策略的多粒子群PSO算法。该算法能够利用一个较大的主粒子群不断搜索问题适值曲线上新的峰,而利用从主粒子群中分离出来的若干个较小的子粒子群去跟踪已经发现的峰的变化。通过对一组标准动态测试函数的实验,能够证明所提出的算法在动态环境中具有较强的鲁棒性和适应性。
Abstract:
Recently,there has been increased interest in evolutionary computation algorithms applied into dynamic environments since many real-world optimization problems are time-varying.Inspired by a forking mechanism,a new multi-swarm optimization algorithm (Forking PSO,FPSO) was proposed to enhance simple PSO’s search in dynamic landscape.In FPSO,a larger main swarm is continuously searching for new peaks and a number of smaller child swarm,divided from main swarm,are used for tracking the achieved peaks over time.Experimental study over a benchmark dynamic problem suggests that the proposed algorithm has much stronger robustness and adaptability in dynamic environments.  相似文献   

3.
基于PSO的SVR参数优化选择方法研究   总被引:18,自引:0,他引:18  
支持向量回归机(SVR)模型的拟合精度和泛化能力取决于其相关参数的选取,因此提出了基于粒子群(PSO)算法的SVR参数优化选择方法;并以不同噪声影响下的sinc函数和实际发酵过程产物浓度的SVR模型为对象,将提出的PSO优化参数方法与现有的交叉验证法、留一法进行比较。仿真结果表明:该PSO优化SVR参数方法可行、有效,由此得到的SVR模型具有更好的学习精度和推广能力。  相似文献   

4.
根据铁矿采选生产过程,建立了以经济效益为目标函数,资源利用率和精矿产量为约束条件,截止品位和入选品位为决策变量的非线性约束优化模型,将粒子群算法和神经网络集成构成PSO-ANN算法来搜索最优品位组合。PSO-ANN算法包括内外两层:外层采用PSO作为搜索算法,采用基于可行性规则的约束处理技术,更新粒子群个体最优位置和全局最优位置,引导粒子朝最优解方向进行搜索;内层是REG模型、BP神经网络及RBF网络,实现粒子(截止品位和入选品位)到损失率、选矿金属回收率和采选成本之间的映射关系,进而计算资源利用率、精矿总量和净收益。以大冶铁矿为例,研究表明:2008-01~06,最优截止品位为17.5%,入选品位为45.4%,与现行方案相比,其资源利用率提高2%,精矿量增加1.34万t,总现值增加1 125万元。该方法为金属铁矿的品位优化提供了一个全新的思路,具有广泛的应用前景。  相似文献   

5.
基于改进PSO算法的实时故障监测诊断测试集优化   总被引:2,自引:0,他引:2  
针对基于相关性模型的复杂系统实时故障诊断问题,引入一种改进的多目标离散粒子群优化算法对测试集进行优化选择,以提高诊断系统效率,降低测试成本。基于现有粒子群优化算法,将粒子速度更新和位置更新的意义与测试选择相联系,提出了新的速度和位置更新公式;针对测试集故障检测数、故障隔离数、测试个数及成本等多个指标,分别设计了故障监测测试集和诊断测试集的多目标适应度函数,并给出最优解的多目标更新方法。仿真结果表明:改进算法收敛速度快,计算精度高,可为实时监测诊断系统测试集优化选择提供有效指导。  相似文献   

6.
针对粒子群优化(PSO, particle swarm optimization)和高效全局优化(EGO, efficient global optimization)两种算法的特点,提出一种共识粒子群和局部代理模型协同的全局黑箱优化算法(CPSO-LSM, consensus particle swarm optimization and local surrogate model)。该算法固定PSO算法周期对粒子进行分群并在粒子达成共识后停止,将每群粒子周围的优质子区域输出作为代理模型的建模区域,通过比较各区域最优值获得高质量最优解甚至全局最优解。不仅避免了PSO冗长的计算过程、提高了建立代理模型的速度和精度还可以避免陷入局部最优。通过对比其他算法在标准测试函数的仿真结果,CPSO-LSM具有较好的收敛速度和求解精度。  相似文献   

7.
为了提高稀疏捷变频(sparse frequency agility,SFA)雷达信号在稀疏重构中的精度和稳定性,提出一种基于进化粒子群优化(particle swarm optimization,PSO)算法的SFA雷达信号的优化设计.首先,推导了SFA雷达的信号模型和稀疏重构时的字典矩阵.然后,以最小化SFA雷达信...  相似文献   

8.
近年来,房地产价格持续快速上涨,居民住房问题日益突出,为了缓解中低收入居民住房问题,政府兴建了大批保障性社区.而当前保障性社区公共服务设施普遍存在配置不完善,供给滞后,低效与供给过剩同时存在的问题,导致人口入住过程缓慢,入住率低.这不仅影响到居民的生活质量,同时也影响到保障效果的实现及和谐社会的构建.文章以上海市保障性社区为研究对象,在多目标约束条件下,构建了可以清晰表达保障性社区公共服务设施配置空间的多目标微粒群算法(particle swarm optimization,PSO)优化模型,并基于所构建模型,实证分析保障性社区公共服务设施配置优化模拟,在此基础上求出了公共服务设施最优配置方案,这对于提高保障性社区公共服务设施配置的科学性和合理性,完善社区公共服务设施的配置理论,具有较大的理论意义和实践意义.  相似文献   

9.
基于改进PSO算法的复杂产品协同优化分配研究   总被引:1,自引:0,他引:1  
臧洁  唐加福 《系统仿真学报》2012,24(7):1406-1411
研究网络制造环境中复杂产品关键部件生产任务的协同优化分配问题。以总费用最小为目标,对复杂产品关键部件的生产任务在联盟企业的优化分配进行了研究,提出了该问题的非线性数学规划模型。开发针对该问题的粒子群算法(PSO),该算法提出适用于关键部件-联盟企业关系的离散粒子编码方法。采用基于可行性规则的方法处理约束问题,避免了罚函数的选择,较好地改进了算法的搜索速度和收敛性能。以某企业重型燃机的协同制造为实例,进行仿真研究,仿真结果证明了模型与算法的有效性。  相似文献   

10.
水库调度PSO优化模型及求解方法   总被引:3,自引:0,他引:3  
水库优化调度是水资源系统工程的一个典型,其实质是一个非线性的不等式约束优化问题,然而现行的求解方法中针对离散精度和复杂约束处理两个问题一直考虑不足,相关方面的研究也较少。将连续域寻优的粒子群算法引入到水资源系统工程中,建立水库调度的PSO优化模型,避免因离散而引起的寻优瓶颈,并针对传统粒子群算法的趋同性问题和复杂约束问题,提出退火罚函数法和混沌变异因子法,使改进后的粒子群能更有效地解决水库调度问题。通过实例分析,验证该方法的可靠性,为水库调度提供了一种新的求解途径。  相似文献   

11.
基于邻域粒化的小生境微粒群混合数据约简   总被引:1,自引:0,他引:1  
混合决策系统中同时包含了符号型属性和数值型属性,经典粗糙集处理数值型属性时需要进行离散化,这样会造成信息的丢失。基于邻域粒化的思想,提出了小生境微粒群约简方法,分析了邻域距离函数的选择和大小对分类精度和约简属性数量的影响。邻域粒化的方法可以直接处理数值型属性,微粒群全局优化的特性可以有效的求解全部约简,小生境技术的采用避免了微粒群算法的早熟收敛。选取UCI数据集进行了仿真实验,结果表明该方法可以快速有效地求解混合决策系统的约简,而不影响系统的分类精度。  相似文献   

12.
基于混沌粒子群优化的系统级故障诊断策略优化   总被引:4,自引:0,他引:4  
针对诊断设计优化过程中的关键问题--故障诊断策略优化,提出了基于混沌粒子群优化算法的系统级故障诊断策略优化方法。该算法利用混沌优化不重复遍历系统所有状态的特点,引导粒子在全局范围内搜索,从而克服了粒子群算法“早熟”收敛的缺点。这使算法不仅具有较快的收敛速度,又保证了获得的最优解的可靠性,为获得有效的系统级故障诊断策略提供了可行的方法。最后,给出了该算法在诊断策略优化过程中的关键步骤,通过仿真证明了该算法对于系统级故障诊断策略优化的有效性。  相似文献   

13.
为了改善粒子群优化(particle swarm optimization, PSO)算法在处理复杂约束优化问题时的求解效果,提出了一种基于粒子群和人工蜂群的混合优化(particle swarm optimization artificial bee colony,PSO-ABC)算法。在采用可行性规则进行约束处理的基础上,将PSO种群分为可行子群和不可行子群,并在ABC算法从粒子种群中选择蜜源时,保留部分较优的可行解信息和约束违反程度较低的不可行解信息,弥补了联赛选择算子在处理最优点位于约束边界附近的问题时存在的不足。同时,使用禁忌表存储局部极值,减小了PSO算法陷入局部最优的危险。针对4个标准测试实例的实验结果表明,该算法能够寻得更优的约束最优化解,且稳健性更强。  相似文献   

14.
提出了一种基于实数编码的粒子群优化和遗传算法的混合优化算法,该算法首先由粒子群优化进化一定代数后,将最优的M个粒子保留,去掉适应度较差的pop_size M个粒子。然后以这最优的M个粒子的位置值为基础,选择复制得到pop_size M个个体,并进行交叉、变异等遗传算法运算。最后将保留的M个粒子位置值与遗传算法进化得到新的pop_size M个体合并形成新的粒子种群,进行下一代进化运算。该算法在进化过程中能进行多次信息交换,使两种算法互补性得到更充分的发挥。通过5个函数优化实例与其他多种算法的对比研究,表明该算法收敛性能好,运算速度快,优化能力强。此外,还研究了最优粒子保留规模M以及粒子群优化进化较少代数规模对算法性能的影响。  相似文献   

15.
基于威胁等效和改进PSO算法的UCAV实时航路规划方法   总被引:1,自引:0,他引:1  
为解决无人战斗机(unmanned combat aerial vehicle, UCAV)实时航路规划问题,通过对各种威胁等效为雷达威胁,威胁分级和每级分层次的处理方法,得到每个威胁的击毁和击伤作用距离。建立UCAV简易的二维模型,利用其飞行姿态与雷达散射截面积(radar cross section, RCS)之间的关系,得出以探测概率为基础的威胁代价函数。最后运用自适应Meta Lamarckian学习策略的粒子群优化(particle swarm optimization, PSO)算法对方法进行实时性仿真测试,结果表明此方法的有效性。  相似文献   

16.
针对正交频分复用 (orthogonal frequency division multiplexing, OFDM)系统的峰均功率比高的缺点,提出一种新的相位因子优选对方法,降低OFDM系统的峰均比。相位因子优选对方法原理是,筛选出多个低峰均功率比的子序列,将这些子序列重组后传输来降低系统峰值平均功率比 (peak to average power ratio, PAPR)。把相位因子优选对方法、粒子群优化算法(particle swarm optimization, PSO)与相位因子优选对结合的方法与传统PSO方法对比验证。仿真结果表明,把PSO与相位因子优选对结合的方法应用在OFDM系统中,获得了优于传统PSO算法0.1~0.2 dB的PAPR性能值,证明了新方法的有效性。  相似文献   

17.
Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduction of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness functions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.  相似文献   

18.
低截获概率(low probability of intercept, LPI)雷达作为一种具有强抗干扰能力及低截获特性的新型雷达, 对其精准高效识别已成为雷达对抗一方波形识别的难点。针对该方向主流分类器卷积神经网络(convolution neural network, CNN)的结构智能寻优问题, 提出一种基于粒子群优化(particle swarm optimization, PSO)算法-CNN的波形识别算法。该算法利用PSO的寻优特性, 可实现较大范围内自动搭建不定层数、不定层类别及层内参数的CNN结构并进行迭代寻优; 采用识别精度及网络复杂度相结合的衡量指标, 可根据需求调整两者比重以实现对精度与轻量性的选择。该算法获取的CNN结构实现了比9种经典CNN结构更好的LPI雷达波形识别效果, 同时避免了波形识别时人工选定CNN超参数缺乏智能性、客观性的问题, 提高了选用CNN结构的适配性及高效性。  相似文献   

19.
研究了非规则低密度奇偶校验(low-density parity-check, LDPC)码度序列阈值计算方法,详细讨论了构造具有较高阈值度序列的步骤与约束条件的处理,提出了一种基于粒子群优化(particle swarm optimization, PSO)算法的度序列优化方法。仿真了此方法的寻优效果,给出了一些接近Shannon限的优秀度序列和分析比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号