首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
利用水热法制备了铋-钴双金属氧化物(Bi_(3.43)Co_(0.57)O_(5.9))电极材料并用于超级电容器的构建,通过X-射线衍射、扫描电子显微镜(SEM)、循环伏安法(CV)、恒电流充放电法(GCD)以及交流阻抗法(EIS)等手段对材料进行物理及电化学性能测试。结果表明:合成的Bi_(3.43)Co_(0.57)O_(5.9)作为超级电容器的电极材料具有很好的电化学性能。当电流密度在1 A/g时,Bi_(3.43)Co_(0.57)O_(5.9)电极材料的比电容为890.6 F/g;当电流密度增加至5 A/g时,比电容仍保持在705.3 F/g。10 A/g电流密度下,2 000次恒电流充放电循环后,比电容保持率高达92.3%,表明该材料具有出色的循环稳定性。  相似文献   

2.
为提高混合超级电容器正极Pb O2的赝电容性能,采用温和水相沉淀法制备了纳米WO3·H2O粒子,通过复合共沉积法将WO3·H2O嵌入Pb O2镀层中,制备了Pb O2+WO3·H2O复合电极材料。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)等分析方法对复合电极材料的组成、结构和形貌进行了表征。通过循环伏安扫描(CV)和充放电等电化学测试,对复合电极材料在超级电容器中的赝电容性能进行了研究。结果表明,该复合电极材料由β-Pb O2和WO3·H2O组成;随着WO3·H2O含量的增加,复合材料的比表面积和孔隙率随之增加;其比电容值可达到320 F·g-1,表现出了良好的赝电容性能。  相似文献   

3.
多金属氧酸盐由于具有快速可逆的多电子氧化还原反应特点,已成为备受瞩目的新一代超级电容器电极材料.但多金属氧酸盐易溶于水以及众多溶剂的缺点导致其循环稳定性能差、电容值偏低,制约了该电极材料的实际应用.将典型的多金属氧酸盐——磷钨酸盐通过四丁基溴化铵进行处理后,得到不溶于水的磷钨酸盐四丁基溴化铵电荷转移配合物.在三电极系统中测试其超级电容器性能,在5 A·g~(-1)电流密度下的电容值是64.1 F·g~(-1),在电流密度为15 A·g~(-1)时循环充电/放电15000次以后的电容保持率高达97%.磷钨酸盐四丁基溴化铵电荷转移配合物的循环稳定性能优于多数赝电容器电极材料,为磷钨酸盐在超级电容器电极材料方面的应用提供了一定的基础.  相似文献   

4.
采用电化学共沉积技术在泡沫镍基体上直接制备掺杂Zn的Ni(OH)2电极,研究了乙醇-水体系下不同镍锌比电沉积溶液制备的电极材料的电容特性。通过XRD、SEM、EDS等测试方法对制备的电极材料进行微结构表征,并用恒流充放电、循环伏安法系统地考察其电化学性能。结果表明:所制备的电极材料为掺杂Zn的α-Ni(OH)2。当镍锌比为1∶0.0075时,循环伏安测试(扫描速率是1mV.s-1)α-Ni(OH)2电极的比电容达1906.09F.g-1。经100次恒流充放电循环后比电容衰减仅0.09%,说明电极材料具有良好的稳定性。在7.5mA.cm-2电流密度下,比电容达313.88F.g-1。  相似文献   

5.
氢氧化镍-炭复合超级电容器的研究   总被引:2,自引:0,他引:2  
用化学沉淀法制备出Ni(OH)2,以Ni(OH)2和活性炭为正负极组成复合超级电容器.用循环伏安法和恒流充放电实验研究了电极的电化学性能和容量性质.恒流充放电实验表明,该复合超级电容器具有良好的充放电性能及循环寿命,在6mol·L-1KOH电解液中的最大比容量可达450F·g-1.  相似文献   

6.
利用水热和后热处理的方法,在不锈钢片上制备了Co_3O_4纳米线阵列,并作为阳极应用到锂离子电池上。结构和形貌表征发现,Co_3O_4纳米线为多孔结构,由大小为20~40nm的Co_3O_4颗粒构成。电化学特性测试表明,Co_3O_4纳米线阵列电极具有良好的循环稳定性和优异的倍率特性,在890mA/g的电流密度下,可逆容量为1 300mAh/g,循环150次后,库伦效率保持在99%以上。分析指出,多孔纳米结构不但使活性物质Co_3O_4能够充分与电解液接触并反应,有效地适应材料在充放电过程中的体积变化,而且减小了锂离子和电子在其中的输运距离。同时,在集流体上直接生长活性物质,它们之间具有良好的电接触,有利于电子通过界面的快速传输。  相似文献   

7.
采用简单的水热-磷化热解法合成高性能的NiCoP/石墨烯(GS)复合电极材料.采用X射线衍射、拉曼光谱和透射电镜对材料的结构进行表征.利用循环伏安(CV)和恒流充放电(GCD)对材料的电容性能进行测试.结果表明,粒径为10~20 nm的NiCoP纳米粒子均匀地负载在石墨烯上.当其作为电极材料应用于超级电容器中时,展示出良好的电化学性能,在1 A/g时,其比电容为896 F/g.5 000次循环后,其比电容保持率为87.9%.  相似文献   

8.
电沉积法制备超级电容器电极材料纳米MnO_2   总被引:2,自引:0,他引:2  
采用恒电流、恒电位及循环伏安三种电沉积方法在石墨上从pH为5.7,浓度为0.16 mol/L MnSO_4水溶液中分别制备了具有纳米结构的超级电容器活性电极材料MnO_2.用扫描电镜测试了其结晶形貌,用电化学研究了其在不同浓度的Na_2SO_4溶液中的电容特性,计算了它们的比电容,并对测试结果进行了比较和分析.结果表明:MnO_2的形貌及性能与沉积方法有关,所合成的MnO_2的粒径大约50 nm;用恒电流沉积法制备的样品,在0.3 mol/L的Na_2SO_4溶液中比电容最高,可达306.75 F/g.  相似文献   

9.
电极材料和电解液是超级电容器的两个关键因素.通过液相反应制备了纤维状纳米MnO2,X射线衍射分析表明产物是α-MnO2和γ-MnO2组成的混合晶相.利用循环伏安和恒流充放电测试其电化学性能,在0.15V~O.75V(SCE)工作电压范围内考察了在MgSO4、MnSO4、(NH4)2SO4、Na2SO4溶液中的电容性能,结果表明该电极材料在(NH4)2SO4溶液中电容性能优越,说明(NH4)2SO4溶液为纤维状纳米MnO2电极较适合电解液.讨论了(NH4)2SO4浓度对电极材料电容性能的影响,该电极材料在浓度为1mol·L-1的(NH4)2SO4中具有优异的电容性能;工作电流密度为3mA·cm-2的恒流充放测试中,其比容量可达142.2 F·g-1.  相似文献   

10.
采用冷冻干燥有机气凝胶法制备碳气凝胶,利用沉积法在其表面负载Mn_2O_3制备Mn_2O_3/CRF复合材料,并通过调节沉积时间制得4种不同的Mn2O3/CRF复合材料,并考察了4种复合材料的电化学性能差异.结果表明,沉积时间为10 min的Mn_2O_3/CRF复合材料的比电容最大,且循环伏安曲线矩形的宽度最大,CV曲线覆盖面积最大,比电容高达375 F/g,表现出良好的电化学电容特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号