首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
目的 针对线控四轮转向汽车横向稳定性不足及控制鲁棒性差等问题,提出一种主动转向反馈控制策略。方法 使用Simulink搭建线控转向系统转向执行机构动力学模型,将MATLAB/Simulink与Carsim联合仿真,建立线控四轮转向整车模型;基于二自由度模型分析横摆角速度和质心侧偏角对汽车稳定性的影响,推导理想的横摆角速度和质心侧偏角;以横摆角速度增益恒定为依据设计理想传动比,得到期望前轮转角,以横摆角速度误差为控制量设计模糊控制器得到附加前轮转角对期望转角实时修正,实现前轮主动转向;针对横摆角速度和质心侧偏角与理想值之间的误差,加权得到稳定性控制目标;设计自适应积分滑模反馈控制策略输出后轮转角,对理想值进行跟踪,实现后轮主动转向。结果 仿真实验结果表明:所搭建的线控转向系统能够准确反映汽车动力学特性。相比无控制的机械前轮转向汽车与横摆反馈控制的四轮转向汽车,线控主动四轮转向汽车在双移线工况下将质心侧偏角控制在0值附近波动,横摆角速度跟踪误差控制在1.149 deg/s以内;在角阶跃工况下将质心侧偏角稳态值控制在0.065 deg,横摆角速度稳态值误差为0.074 deg/s。结论 线控...  相似文献   

2.
基于比例控制的4WS汽车操纵稳定性仿真研究   总被引:1,自引:1,他引:0  
建立了基于比例控制的4轮转向(4WS)汽车的动力学模型,在Matlab环境下针对不同车速时的驾驶员模型跟随车辆轨迹、汽车横摆角速度、侧向加速度以及前轮转角的瞬态响应进行了闭环仿真分析,并与无控制的前轮转向(FWS)汽车的动力学模型结果进行了比较. 结果表明:在相同的驾驶员模型下,主动四轮转向汽车的操纵稳定性优于前轮转向汽车,采用闭合曲线跑道比采用蛇型道路进行仿真更客观地反映控制效果和车辆特性.   相似文献   

3.
基于Simulink的四轮转向汽车神经网络控制策略仿真   总被引:1,自引:0,他引:1  
针对汽车小转角时质心侧偏角为零,高速大转角时前轴抗侧滑的控制目标,提出一种四轮转向汽车控制策略.在Simulink环境下建立包含轮胎非线性和计及侧倾的三自由度四轮转向汽车模型,运用双隐含层BP神经网络训练得到四轮转向控制器.仿真结果表明,神经网络控制器可有效控制高速时汽车前轴滑动的趋势,并在低速到高速时使汽车质心侧偏角基本为零,控制误差低于比例转角控制策略和横摆角速度反馈控制策略.同时高速时横摆角速度响应与前轮转向汽车接近,汽车的侧向加速度和车身侧倾角稳态值比前轮转向有所降低.  相似文献   

4.
基于状态反馈的四轮转向汽车最优控制   总被引:3,自引:0,他引:3  
为了充分发挥四轮转向技术在改善汽车操纵稳定性方面的优势,对车辆转向的理想状态进行了分析,构建了理想转向模型.依据具有二次型性能指标的最优控制理论,以车辆转向理想模型作为跟踪目标,采用基于状态反馈和前轮前馈的控制策略,对四轮转向汽车后轮转向控制规律进行了研究,并推导了后轮转角最优控制算法.利用Matlab/Simulink工具,对所提出的后轮转向最优控制方法在不同侧重的权值下,分别与比例控制四轮转向汽车和传统的前轮转向汽车进行了动力学仿真对比.仿真结果表明:所设计的后轮转角最优控制器改善了车辆转向的瞬态与稳态响应特性,其瞬态响应的超调量减少,稳定时间缩短;侧向滑移的稳态值有所降低,从而提高了车辆转向的操纵稳定性.  相似文献   

5.
采用汽车的"自行车"模型,建立了四轮转向汽车的数学模型,在MATLAB/Simulink环境下搭建仿真模型,对四轮转向汽车的前轮转角输入控制因子和横摆角速度反馈输入控制因子对汽车操纵稳定性的影响进行了仿真分析.研究表明,两控制因子均能显著降低汽车质心侧偏角和侧向加速度,提高车辆操纵稳定性,但同时又降低了车辆的横摆角速度,降低了驾驶员的转向感觉;横摆角速度反馈输入控制因子对汽车质心侧偏角的影响还表现出了二重性,在四轮转向设计阶段应根据具体情况合理选取两控制因子.  相似文献   

6.
针对线控四轮转向汽车平行泊车路径规划与跟踪控制问题,提出一种基于改进粒子群优化算法的平行泊车路径规划方法和一种基于前馈控制和反馈控制的平行泊车路径跟踪控制策略.首先,综合考虑线控四轮转向汽车运动学非完整约束、动力和转向子系统的过程约束和边界约束、避障约束、泊车初始位姿和目标位姿约束,建立以最小化泊车过程总时长为目标的平行泊车路径规划约束最优化问题,并采用可以处理等式约束和不等式约束的粒子群优化算法对其进行求解,得到最优平行泊车路径.随后,利用平行泊车路径规划过程得到的车轮转向角作为前馈控制量,并利用汽车实际位姿与期望位姿的偏差构建PI反馈控制量,实现对规划的平行泊车路径快速、精确和稳定的跟踪控制.最后,利用车辆动力学仿真软件构建模型在环仿真系统,验证所提出方法的可行性和有效性.结果表明:所提出的方法可以快速、精确和稳定地引导线控四轮转向汽车自动完成平行泊车任务.  相似文献   

7.
基于LQR的四轮转向汽车控制方法   总被引:4,自引:4,他引:0  
用选定的加权系数将轮胎较大侧偏刚度和轮胎较小侧偏刚度的车辆状态方程关联起来,并应用了线性二次型最优控制理论(LQR)设计了综合考虑轮胎非线性特征的四轮转向线性二次型最优综合控制算法;用Matlab/Simulink和Carsim建立了联合仿真模型对所设计的控制算法的控制效果进行了验证. 仿真结果表明:在低附着系数路面进行车道变换行驶时,基于定轮胎侧偏刚度LQR线性控制的四轮转向汽车与前轮转向汽车相比具有更加优越的操控性能;基于非线性轮胎侧偏刚度LQR权系数控制的四轮转向汽车比定轮胎侧偏刚度LQR线性控制的四轮转向汽车要有较好的操控性能.   相似文献   

8.
在驾驶员-四轮转向汽车闭环操纵系统动力学模型的基础上,应用非对称特征值问题的矩阵摄动理论,给出驾驶员-四轮转向汽车闭环操纵系统运动稳定性对汽丰结构参数和四轮转向系统控制参数的灵敏度和多个参数同时变化时的摄动量,并与前轮转向汽车的结果进行了比较。仿真结果表明,本文方法可以为汽车操纵稳定性的优化设计提供理论基础。  相似文献   

9.
针对分布式电驱动整车差动转向问题,文章以线控转向机构作为转向执行机构,研究基于横摆角速度和车辆路径的综合反馈控制策略。采用MATLAB/Simulink和CarSim的联合仿真,设计滑模控制器和线性二次型调节器,重新分配四轮转矩,决策出合理的前轮附加转角,以保证汽车的行驶稳定性,并选取典型工况对控制策略进行仿真验证。仿真结果表明,基于横摆角速度的滑模控制器与基于路径的路径跟踪控制器的综合控制策略,相较于传统基于横摆角速度和质心侧偏角的滑模控制器,车辆实际横摆角速度与理想横摆角速度误差大幅下降;车辆路径与期望路径误差亦得到有效控制。  相似文献   

10.
采用汽车的"自行车"模型,建立了四轮转向汽车的数学模型,基于二次型最优控制理论求得最优控制反馈增益,最后在MATLAB/Simulink环境下搭建仿真模型进行仿真,并与前轮转向汽车以及传统的前后轮转角成比例的四轮转向车辆进行对比分析.分析表明,基于最优控制的四轮转向车辆能够很快地将汽车的质心侧偏角降到基本为零,又能保证横摆角速度基本不变,提高汽车的行驶安全性和操纵稳定性,同时又保证了驾驶员原有的转向感觉,减轻了驾驶员的操纵难度和疲劳程度.  相似文献   

11.
四驱混合动力轿车转弯工况路径跟踪控制   总被引:2,自引:1,他引:1  
针对四驱混合动力轿车,提出一种转弯工况下集成横向与纵向运动控制功能的路径跟踪控制策略.在建立车辆动力学与动力系统模型的基础上,设计了基于轨迹跟踪误差的驾驶员预瞄转向模型;采用模糊控制器确定了期望车速,对转矩分配问题进行优化研究;设计了车速与轨迹跟踪模型预测控制器;搭建了CarSim与MATLAB/Simulink联合仿真模型与自动驾驶模拟驾驶器,对控制策略进行了离线仿真和硬件在环仿真试验.研究结果表明,车辆转弯过程中路径及车速跟踪效果良好,满足转弯工况路径跟踪需求.  相似文献   

12.
基于Hamilton理论的无人车路径跟踪控制   总被引:1,自引:0,他引:1  
针对当前车辆路径跟踪控制存在精度低、可靠性差的问题,基于Hamilton理论提出一种四轮驱动四轮转向无人车路径跟踪分层控制方法.通过集成车辆动力学模型和路径跟踪模型,建立了路径跟踪误差模型,结合系统控制目标,提出采用Hamilton理论设计车辆上层控制器,用于实现路径跟踪误差模型的镇定,从而提高车辆路径跟踪的精度与鲁棒性.同时,在下层控制器中,设计4个车轮纵向轮胎力分配算法,通过轮胎力的动态分配满足车辆上层控制需求.利用CarSim和Simulink搭建车辆路径跟踪联合仿真模型并进行仿真实验,仿真结果表明,提出的无人车路径跟踪分层控制策略能够通过前后轮转角以及4个轮胎力的实时控制与分配,抑制路径跟踪过程中的横向误差和航向误差,提高路径跟踪精度并确保控制系统的可靠性.   相似文献   

13.
针对无人车轨迹跟踪问题,提出了一种基于状态估计的无人车前轮转角和横摆稳定协调控制策略.建立了车辆轨迹跟踪模型,利用模型预测控制算法设计了轨迹跟踪控制器,得到实时跟踪参考轨迹所需的前轮转角.根据车辆模型设计了一种基于未知输入观测器的前轮转角估计方法,并将估计结果作为前轮转角跟踪控制的输入量.基于非奇异终端滑模控制设计了前轮转角跟踪方法,通过转向电机扭矩来控制车辆转向以实现轨迹跟踪.同时,设计了车辆横摆稳定控制器,通过控制横摆角速度跟踪误差确保车辆横摆稳定.建立了CarSim-Simulink联合仿真模型并进行仿真实测试.结果表明,未知输入观测器具有较好的前轮转角估计效果,从而为车辆协调控制提供可靠信息源,协调控制策略能够在保证车辆横摆稳定性的同时完成车辆轨迹跟踪.   相似文献   

14.
针对四轮轮毂电机电动车横摆力矩控制问题,进行横摆力矩参数自调整模糊控制研究,确定整车横摆力矩分层控制结构.基于参数自调整模糊控制理论设计附加横摆力矩决策控制器.利用四轮驱动力矩独立可控的优势,采用规则分配方法进行四轮驱动力分配,并通过CarSim与Matlab/Simulink联合仿真实验,选取连续正弦方向盘转角输入工况对控制方法进行验证.结果表明:四轮轮毂电机横摆力矩参数自调整模糊控制方法能够有效提高车辆行驶稳定性.  相似文献   

15.
为进一步提高分布式驱动电动汽车行驶过程中的稳定性,提出主动前轮转向(AFS)和直接横摆力矩控制(DYC)协调控制策略.为提高车辆稳态行驶时转向能力,设计基于滑模控制(SMC)的前轮主动转向控制器实时修正前轮转角;以维持车辆工作在稳态工作区为控制目标,设计基于模型预测控制(MPC)的车辆稳定性控制器,通过设定的分配规则按轴荷比等比例分配各轮驱/制动力矩.利用相平面法作为判定依据自适应分配各控制器权重,实现控制器之间的切换.在连续转向工况下,对控制算法进行仿真验证.结果表明:在相同转角输入下,相较于无控车辆,受控状态下车辆的横摆稳定性能提高了16%,行驶状态得到了改善.  相似文献   

16.
针对多电机控制系统存在响应性和同步性差的问题,以四轮独立驱动公铁两用车转向系统为被控对象,提出一种多永磁同步电机(permanent magnet synchronous motor, PMSM)协同控制策略。该控制策略采用偏差耦合的电同步控制方式,对多电机转角误差进行补偿,并提出一种新型非奇异快速终端滑模函数,同时结合超扭曲算法,设计超扭曲非奇异滑模控制器,实现多台永磁同步电机协同控制。基于MATLAB/Simulink平台搭建系统的仿真模型,并基于自主研发的纯电动公铁两用车进行实车试验。试验结果表明,该超扭曲非奇异快速终端滑模控制器可有效减小转向系统控制过程中所产生的跟踪误差、同步误差及系统抖振,缩短系统的响应时间,提高系统的控制精度,达到较为理想的控制效果。  相似文献   

17.
为提高自动驾驶车辆的路径跟踪精度,针对自动驾驶车辆横纵向耦合控制问题,提出了带有前馈控制的PID+LQR联合控制策略。首先,利用二自由度车辆动力学构建路径跟踪误差数学模型,制定横纵向控制流程。随后,设计了用于横向控制的LQR控制器和用于纵向控制的PID控制器,将横纵向控制器进行整合,使得车辆在接收到决策规划系统给出的期望指令后可以进行跟踪行驶。借助CarSim和MATLAB/Simulink联合仿真平台,在连续工况下对该控制策略进行测试。结果表明,提出的横纵向耦合运动控制策略可以控制车辆沿着规划的轨迹行驶,且可将跟踪误差控制在较小的范围内。  相似文献   

18.
研究三轴汽车的转向控制方式.通过建立三轴汽车全轮转向二自由度模型,推导三轴汽车全轮转向系统的动力学方程;运用数值仿真方法,研究三轴汽车全轮转向,前、后四轮转向,前轮转向等不同转向方式下的稳态横摆角速度增益,以及相同转向方式下中轴相对于质心的纵向距离对稳态横摆角速度增益的影响.仿真结果表明,三轴汽车全轮转向是最好的选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号