首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Nishiyama T  Ohsumi K  Kishimoto T 《Nature》2007,446(7139):1096-1099
Until fertilization, the meiotic cell cycle of vertebrate eggs is arrested at metaphase of meiosis II by a cytoplasmic activity termed cytostatic factor (CSF), which causes inhibition of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets mitotic cyclins-regulatory proteins of meiosis and mitosis-for degradation. Recent studies indicate that Erp1/Emi2, an inhibitor protein for the APC/C, has an essential role in establishing and maintaining CSF arrest, but its relationship to Mos, a mitogen-activated protein kinase (MAPK) kinase kinase that also has an essential role in establishing CSF arrest through activation of p90 ribosomal S6 kinase (p90rsk), is unclear. Here we report that in Xenopus eggs Erp1 is a substrate of p90rsk, and that Mos-dependent phosphorylation of Erp1 by p90rsk at Thr 336, Ser 342 and Ser 344 is crucial for both stabilizing Erp1 and establishing CSF arrest in meiosis II oocytes. Semi-quantitative analysis with CSF-arrested egg extracts reveals that the Mos-dependent phosphorylation of Erp1 enhances, but does not generate, the activity of Erp1 that maintains metaphase arrest. Our results also suggest that Erp1 inhibits cyclin B degradation by binding the APC/C at its carboxy-terminal destruction box, and this binding is also enhanced by the Mos-dependent phosphorylation. Thus, Mos and Erp1 collaboratively establish and maintain metaphase II arrest in Xenopus eggs. The link between Mos and Erp1 provides a molecular explanation for the integral mechanism of CSF arrest in unfertilized vertebrate eggs.  相似文献   

2.
Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases expressed widely in eukaryotic cells. MAPK is activated by a cascade of protein kinase phosphorylation and plays pivotal roles in regulating meiosis process in oocytes. As an important physical substrate of MAPK, p90rsk mediates numerous MAPK functions. MAPK was activated at G2/M transition during meiosis. Its activity reached the peak at MⅠ stage and maintained at this level until the time before the pronuclear formation after fertilization. There is complex interplay between MAPK and MPF in the meiosis regulation. Furthermore, other intracellular signal transducers, such as cAMP, protein kinase C and protein phosphotase, ect., also regulated the activity of MAPK at different stages during meiosis in oocytes. In the present article, the roles of MAPK signaling pathway in oocyte meiosis are reviewed and discussed.  相似文献   

3.
Reimann JD  Jackson PK 《Nature》2002,416(6883):850-854
Vertebrate eggs are arrested at metaphase of meiosis II with stable cyclin B and high cyclin B/Cdc2 kinase activity. The ability of the anaphase-promoting complex/cyclosome (APC), an E3 ubiquitin ligase, to trigger cyclin B destruction and metaphase exit is blocked in eggs by the activity of cytostatic factor (CSF) (reviewed in ref. 1). CSF was defined as an activity in mature oocytes that caused mitotic arrest when injected into dividing embryos. Fertilization causes a transient increase in cytoplasmic calcium concentration leading to CSF inactivation, APC activation, cyclin B destruction and mitotic exit. The APC activator Cdc20 is required for APC activation after fertilization. We show here that the APC(cdc20) inhibitor Emi1 (ref. 6) is necessary and sufficient to inhibit the APC and to prevent mitotic exit in CSF-arrested eggs. CSF extracts immunodepleted of Emi1 degrade cyclin B, and exit from mitosis prematurely in the absence of calcium. Addition of Emi1 to these Emi1-depleted extracts blocks premature inactivation of the CSF-arrested state. Emi1 is required to arrest unfertilized eggs at metaphase of meiosis II and seems to be the long-sought mediator of CSF activity.  相似文献   

4.
Rauh NR  Schmidt A  Bormann J  Nigg EA  Mayer TU 《Nature》2005,437(7061):1048-1052
Vertebrate eggs awaiting fertilization are arrested at metaphase of meiosis II by a biochemical activity termed cytostatic factor (CSF). This activity inhibits the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that triggers anaphase onset and mitotic/meiotic exit by targeting securin and M-phase cyclins for destruction. On fertilization a transient rise in free intracellular calcium causes release from CSF arrest and thus APC/C activation. Although it has previously been shown that calcium induces the release of APC/C from CSF inhibition through calmodulin-dependent protein kinase II (CaMKII), the relevant substrates of this kinase have not been identified. Recently, we characterized XErp1 (Emi2), an inhibitor of the APC/C and key component of CSF activity in Xenopus egg extract. Here we show that calcium-activated CaMKII triggers exit from meiosis II by sensitizing the APC/C inhibitor XErp1 for polo-like kinase 1 (Plx1)-dependent degradation. Phosphorylation of XErp1 by CaMKII leads to the recruitment of Plx1 that in turn triggers the destruction of XErp1 by phosphorylating a site known to serve as a phosphorylation-dependent degradation signal. These results provide a molecular explanation for how the fertilization-induced calcium increase triggers exit from meiosis II.  相似文献   

5.
Nishiyama T  Yoshizaki N  Kishimoto T  Ohsumi K 《Nature》2007,449(7160):341-345
At fertilization, an increase of cytosolic calcium ions (Ca2+) triggers various activation responses in animal eggs. In vertebrates, these responses include exit from metaphase arrest in meiosis II (MII exit) and cortical remodelling initiated by cortical granule exocytosis. Although the essential requirement of Ca2+/calmodulin-dependent protein kinase II for inducing MII exit has been documented, a role of the Ca2+/calmodulin-dependent protein phosphatase calcineurin in egg activation has not been investigated. Here we show, using cell-free extracts from unfertilized eggs of Xenopus laevis, that calcineurin is transiently activated immediately after Ca2+ addition to a concentration that induces MII exit. When calcineurin activation is inhibited, cyclin-dependent kinase 1 (Cdk1) inactivation by means of cyclin B degradation is prevented and sperm chromatin incubated in the extracts remains condensed. Similarly, if calcineurin is inhibited in intact eggs, MII exit on egg activation is prevented. In addition, the activation contraction in the cortex is suppressed whereas cortical granule exocytosis occurs. We further demonstrate that, when a high level of calcineurin activity is maintained after activation, growth of sperm asters is prevented in egg extracts and, consistently, migration of male and female pronuclei towards each other is hindered in fertilized eggs. Thus, both activation and the subsequent inactivation of calcineurin in fertilized eggs are crucial for the commencement of vertebrate embryonic development.  相似文献   

6.
N Sagata  N Watanabe  G F Vande Woude  Y Ikawa 《Nature》1989,342(6249):512-518
The c-mos proto-oncogene product, pp39mos, is present in unfertilized Xenopus eggs, and disappears on fertilization. Microinjection of synthetic mos RNA into two-cell embryos induces cleavage arrest at metaphase. By contrast, egg cytosol extracts, when immunodepleted of endogenous pp39mos, lose their cleavage-arresting activity in injected embryos. These results demonstrate that Mos protein is the cytostatic factor CSF, long known as an endogenous meiotic inhibitor in vertebrate eggs.  相似文献   

7.
N Watanabe  T Hunt  Y Ikawa  N Sagata 《Nature》1991,352(6332):247-248
In vertebrates, mature eggs are arrested at the second meiotic metaphase by the cytostatic factor (CSF), now known to be the c-mos proto-oncogene product (Mos). Fertilization or egg activation triggers a transient increase in the cytoplasmic free calcium and releases the meiotic arrest by inactivating maturation/mitosis-promoting factor (MPF). CSF or Mos, which is also inactivated by the calcium transient, seems to stabilize MPF in mature eggs and CSF-injected embryos. Thus, it was assumed that CSF inactivation is the primary cause of MPF inactivation on meiotic release. We have directly compared the degradation kinetics of CSF (Mos) and MPF during meiotic release, using the same batch of Xenopus eggs. We report here that, at the molecular level, cyclin subunits of MPF are degraded before Mos is degraded and, at the physiological level, that MPF activity is inactivated before CSF activity during activation of Xenopus eggs. These results, in conjunction with circumstantial evidence, support the novel view that a calcium transient on fertilization induces a CSF-independent pathway for MPF inactivation, whereas CSF inactivation during meiotic release serves only to allow the fertilized egg to enter mitosis.  相似文献   

8.
9.
Protein kinase C (PKC) is a superfamily of Ser/Thr protein kinases that is distributed widely in eukaryotes. It plays key regulatory roles at multiple steps of oocyte meiotic maturation and fertilization. During the process of meiotic maturation, the activation of PKC in cumulus cells stimulates meiotic maturation, whereas the activation of PKC in oocytes results in the inhibition of germinal vesicle breakdown. PKC activity increases following the meiotic maturation, and decreases at the transition of metaphase/anaphase in meiosis I, so as to facilitate the release of the first polar body and the entry of meiosis II. In fertilization of mammalian oocytes, PKC may act as one of the downstream targets of Ca2+ to stimulate the cortical granule exocytosis, release the oocytes from MII arrest and to induce pronucleus formation. PKC is also involved in the regulation of maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Several PKC isoforms have been identified in mammalian oocytes, and there is evidence showing that classical PKCs may be the principal mediator of oocyte cortical reaction.  相似文献   

10.
Whitmire E  Khan B  Coué M 《Nature》2002,419(6908):722-725
The early division cycles of an embryo rely on the oocyte's ability to replicate DNA. During meiosis, oocytes temporarily lose this ability. After a single round of pre-meiotic S-phase, oocytes enter meiosis and rapidly arrest at prophase of meiosis I (G2). Upon hormonal stimulation, arrested oocytes resume meiosis, re-establish DNA replication competence in meiosis I shortly after germinal vesicle breakdown (GVBD), but repress replication until fertilization. How oocytes lose and regain replication competence during meiosis are important questions underlying the production of functional gametes. Here we show that the inability of immature Xenopus oocytes to replicate is linked to the absence of the Cdc6 protein and the cytoplasmic localization of other initiation proteins. Injection of Cdc6 protein into immature oocytes does not induce DNA replication. However, injection of Cdc6 into oocytes undergoing GVBD is sufficient to induce DNA replication in the absence of protein synthesis. Our results show that GVBD and Cdc6 synthesis are the only events that limit the establishment of the oocyte's replication competence during meiosis.  相似文献   

11.
J C Labbe  M G Lee  P Nurse  A Picard  M Doree 《Nature》1988,335(6187):251-254
In both starfish and amphibian oocytes, the activity of a major protein kinase which is independent of Ca2+ and cyclic nucleotides increases dramatically at meiotic and mitotic nuclear divisions. The in vivo substrates of this kinase are unknown, but phosphorylation of H1 histone can be used as an in vitro assay. We have purified this kinase from starfish oocytes. The major band in the most highly purified preparation contained a polypeptide of relative molecular mass (Mr) 34,000 (34K). This is the same size as the protein kinase encoded by cdc2+, which regulates entry into mitosis in fission yeast and is a component of MPF purified from Xenopus. Here, we show that antibodies against p34 recognize the starfish 34K protein and propose that entry into meiotic and mitotic nuclear divisions involves activation of the protein kinase encoded by a homologue of cdc2+. Given the wide occurrence of cdc2+ homologues from budding yeast to Xenopus and human cells, this activation may act as a common mechanism controlling entry into mitosis in eukaryotic cells.  相似文献   

12.
M A Félix  J C Labbé  M Dorée  T Hunt  E Karsenti 《Nature》1990,346(6282):379-382
The cell cycles of early Xenopus embryos consist of a rapid succession of alternating S and M phases. These cycles are controlled by the activity of a protein kinase complex (cdc2 kinase) which contains two subunits. One subunit is encoded by the frog homologue of the fission yeast cdc2+ gene, p34cdc2 and the other is a cyclin. The concentration of cyclins follows a sawtooth oscillation because they accumulate in interphase and are destroyed abruptly during mitosis. The association of cyclin and p34cdc2 is not sufficient for activation of cdc2 kinase, however; dephosphorylation of key tyrosine and threonine residues of p34cdc2 is necessary to turn on its kinase activity. The activity of cdc2 kinase is thus regulated by a combination of translational and post-translational mechanisms. The loss of cdc2 kinase activity at the end of mitosis depends on the destruction of the cyclin subunits. It has been suggested that this destruction is induced by cdc2 kinase itself, thereby providing a negative feedback loop to terminate mitosis. Here we report direct experimental evidence for this idea by showing that cyclin proteolysis can be triggered by adding cdc2 kinase to a cell-free extract of interphase Xenopus eggs.  相似文献   

13.
N Yew  M L Mellini  G F Vande Woude 《Nature》1992,355(6361):649-652
When fully grown Xenopus oocytes are stimulated by progesterone, a period of protein synthesis is necessary for maturation. Synthesis of the mos proto-oncogene product, pp39mos, is necessary for the activation of M-phase promoting factor (MPF) in meiosis I. On the basis that mos is translated de novo on hormonal stimulation of Xenopus oocytes and that injecting mos RNA into oocytes induces their maturation, we have proposed that the mos protein is a candidate initiator of oocyte maturation, needed to trigger the conversion of precursor MPF into its active form. To determine whether mos is the only protein required for initiating maturation, we have produced a soluble, active recombinant mos protein and injected it into Xenopus oocytes. We report here that in the absence of protein synthesis that mos protein efficiently induces germinal vesicle breakdown and the activation of MPF. The oocytes, however, do not proceed into meiosis II. Thus, the mos protein fulfills the requirements of an initiator protein, but the synthesis of one or more additional proteins may be necessary to complete oocyte maturation.  相似文献   

14.
A Picard  E Karsenti  M C Dabauvalle  M Dorée 《Nature》1987,327(6118):170-172
Mature oocytes (unfertilized eggs) are arrested at definite cell-cycle stages which vary from species to species. In frogs and mammals, the oocytes are arrested at the second metaphase of meiosis whereas in echinoderms they are blocked later, at the pronucleus stage. What causes the maturing oocytes to stop at some point in the cell cycle is not entirely clear. In frogs, the metaphase arrest seems to be maintained by a cytostatic factor. In echinoderms, which stop at interphase, no such a factor has so far been found. The fertilization process, beyond the introduction of paternal chromosomes, releases the oocyte from cell-cycle arrest and provides a functional centrosome to replace the endogenous centrosome which is apparently lost during oogenesis in most species. Several lines of evidence suggest that release from cell-cycle arrest is mediated by a Ca2+ burst which is associated with fertilization, and it is known that the functional centrosome provided by the sperm is necessary for mitotic spindle formation and cleavages. We report here that microinjection of purified human centrosomes into mature starfish oocytes is sufficient to release them from arrest at interphase and to support many cleavages leading to the occasional formation of normal embryos. In this species centrosome induced re-entry into the cell cycle does not require a transient calcium burst nor does it require intact microtubules.  相似文献   

15.
Meiosis in the female germ line of mammals is distinguished by a prolonged arrest in prophase of meiosis I between homologous chromosome recombination and ovulation. How DNA damage is detected in these arrested oocytes is poorly understood, but it is variably thought to involve p53, a central tumour suppressor in mammals. While the function of p53 in monitoring the genome of somatic cells is clear, a consensus for the importance of p53 for germ line integrity has yet to emerge. Here we show that the p53 homologue p63 (refs 5, 6), and specifically the TAp63 isoform, is constitutively expressed in female germ cells during meiotic arrest and is essential in a process of DNA damage-induced oocyte death not involving p53. We also show that DNA damage induces both the phosphorylation of p63 and its binding to p53 cognate DNA sites and that these events are linked to oocyte death. Our data support a model whereby p63 is the primordial member of the p53 family and acts in a conserved process of monitoring the integrity of the female germ line, whereas the functions of p53 are restricted to vertebrate somatic cells for tumour suppression. These findings have implications for understanding female germ line fidelity, the regulation of fertility and the evolution of tumour suppressor mechanisms.  相似文献   

16.
17.
Role of NF-kappaB in p53-mediated programmed cell death   总被引:26,自引:0,他引:26  
Ryan KM  Ernst MK  Rice NR  Vousden KH 《Nature》2000,404(6780):892-897
  相似文献   

18.
T Tuomikoski  M A Felix  M Dorée  J Gruenberg 《Nature》1989,342(6252):942-945
Membrane transport between the endoplasmic reticulum and the plasma membrane, which involves the budding and fusion of carrier vesicles, is inhibited during mitosis in animal cells. At the same time, the Golgi complex and the nuclear envelope, as well as the endoplasmic reticulum in some cell types, become fragmented. Fragmentation of the Golgi is believed to facilitate its equal partitioning between daughter cells. In fact, it has been postulated that both the inhibition of membrane traffic and Golgi fragmentation during mitosis are due to an inhibition of vesicle fusion, while vesicle budding continues. Although less is known about the endocytic pathway, internalization and receptor recycling are also arrested during mitosis. We have now used a cell-free assay to show that the fusion of endocytic vesicles from baby hamster kidney cells is reduced in Xenopus mitotic cytosol when compared with interphase cytosol. We reconstituted this inhibition in interphase cytosol by adding a preparation enriched in the starfish homologue of the cdc2 protein kinase. Inhibition was greater than or equal to 90% when the added cdc2 activity was in the range estimated for that in mitotic Xenopus eggs, which indicates that during mitosis the cdc2 kinase mediates an inhibition of endocytic vesicle fusion, and possibly other fusion events in membrane traffic.  相似文献   

19.
In vertebrate cells, the nuclear entry of Cdc2-cyclin B1 (MPF) during prophase is thought to be essential for the induction and coordination of M-phase events. Phosphorylation of cyclin B1 is central to its nuclear translocation, but the kinases that are responsible remain unknown. Here we have purified a protein kinase from Xenopus M-phase extracts that phosphorylates a crucial serine residue (S147) in the middle of the nuclear export signal sequence of cyclin B1. We have identified this kinase as Plx1 (ref. 16), a Xenopus homologue of Polo-like kinase (Plk)-1. During cell-cycle progression in HeLa cells, a change in the kinase activity of endogenous Plk1 toward S147 and/or S133 correlates with a kinase activity in the cell extracts. An anti-Plk1 antibody depletes the M-phase extracts of the kinase activity toward S147 and/or S133. An anti-phospho-S147 antibody reacts specifically with cyclin B1 only during G2/M phase. A mutant cyclin B1 in which S133 and S147 are replaced by alanines remains in the cytoplasm, whereas wild-type cyclin B1 accumulates in the nucleus during prophase. Co-expression of constitutively active Plk1 stimulates nuclear entry of cyclin B1. Our results indicate that Plk1 may be involved in targeting MPF to the nucleus during prophase.  相似文献   

20.
N Watanabe  G F Vande Woude  Y Ikawa  N Sagata 《Nature》1989,342(6249):505-511
The Xenopus c-mos proto-oncogene product, pp39mos, accumulates in the unfertilized egg during maturation, is hyperphosphorylated and exhibits protein kinase activity. On fertilization, or soon after the completion of meiosis, the accumulated pp39mos undergoes selective proteolysis. Using an in vitro protease assay system, we show here that this specific proteolysis is caused by the calcium-dependent cysteine protease, calpain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号