首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Demetriou M  Granovsky M  Quaggin S  Dennis JW 《Nature》2001,409(6821):733-739
T-cell activation requires clustering of a threshold number of T-cell receptors (TCRs) at the site of antigen presentation, a number that is reduced by CD28 co-receptor recruitment of signalling proteins to TCRs. Here we demonstrate that a deficiency in beta1,6 N-acetylglucosaminyltransferase V (Mgat5), an enzyme in the N-glycosylation pathway, lowers T-cell activation thresholds by directly enhancing TCR clustering. Mgat5-deficient mice showed kidney autoimmune disease, enhanced delayed-type hypersensitivity, and increased susceptibility to experimental autoimmune encephalomyelitis. Recruitment of TCRs to agonist-coated beads, TCR signalling, actin microfilament re-organization, and agonist-induced proliferation were all enhanced in Mgat5-/- T cells. Mgat5 initiates GlcNAc beta1,6 branching on N-glycans, thereby increasing N-acetyllactosamine, the ligand for galectins, which are proteins known to modulate T-cell proliferation and apoptosis. Indeed, galectin-3 was associated with the TCR complex at the cell surface, an interaction dependent on Mgat5. Pre-treatment of wild-type T cells with lactose to compete for galectin binding produced a phenocopy of Mgat5-/- TCR clustering. These data indicate that a galectin-glycoprotein lattice strengthened by Mgat5-modified glycans restricts TCR recruitment to the site of antigen presentation. Dysregulation of Mgat5 in humans may increase susceptibility to autoimmune diseases, such as multiple sclerosis.  相似文献   

2.
JNK is required for effector T-cell function but not for T-cell activation   总被引:30,自引:0,他引:30  
Dong C  Yang DD  Tournier C  Whitmarsh AJ  Xu J  Davis RJ  Flavell RA 《Nature》2000,405(6782):91-94
  相似文献   

3.
B Scott  H Blüthmann  H S Teh  H von Boehmer 《Nature》1989,338(6216):591-593
THE T-cell repertoire within an individual is biased to recognize antigen in the context of self major histocompatibility complex (MHC) antigens. This is thought to depend on a process of positive selection during development. Support for this notion has recently been obtained in experiments using transgenic mice bearing genes for T-cell receptors (TCR) of defined specificity: T cells expressing the introduced genes form the main part of the mature T-cell population only in mice that express the appropriate MHC product. We have now extended these observations using TCR transgenic mice homozygous for the severe combined immunodeficiency (SCID) mutation which are defective in the rearrangement of both TCR and immunoglobulin genes. In this case mature thymocytes develop only in transgenic mice that express the MHC product which restricts the specificity of the transgenic TCR. This shows that the interaction of the alpha beta TCR with thymic MHC antigen is essential for the development of mature T cells. Furthermore, the peripheral lymph nodes of such mice are underdeveloped, suggesting that the peripheral expansion of mature T cells may require interactions with other lymphocytes expressing a range of receptors.  相似文献   

4.
G A Koretzky  J Picus  M L Thomas  A Weiss 《Nature》1990,346(6279):66-68
Stimulation of T lymphocytes through their antigen receptor (T-cell receptor; TCR) results in the activation of a tyrosine kinase and the generation of phosphatidyl inositol (PtdIns)-derived second messengers. Several reports have indicated that CD45, a haematopoietic cell-specific surface glycoprotein with tyrosine phosphatase activity in its cytoplasmic domain, is important in lymphocyte activation. To examine the possibility that CD45 might influence proximal signal transduction events through the TCR, we have isolated a variant of the human T-cell leukaemic line, HPB-ALL, which fails to express this phosphatase. Unlike cells expressing CD45, stimulation of the TCR in the CD45-negative cell does not result in PtdIns-derived second messengers. Reconstitution of CD45 expression restored early signalling events through the TCR. To localize the site of CD45 action, the human muscarinic type 1 receptor, which also activates the PtdIns second messenger pathway, was transfected into the CD45-negative cell. Although stimulation of the TCR failed to generate PtdIns-derived second messengers, there was normal activity of the PtdIns pathway when human muscarinic receptor type 1 was stimulated, despite the absence of CD45. These data indicate that CD45 influences a cellular component that is essential for effective coupling of the TCR to the PtdIns second messenger pathway.  相似文献   

5.
Stefanová I  Dorfman JR  Germain RN 《Nature》2002,420(6914):429-434
Major histocompatibility complex (MHC) class I and II molecules are highly polymorphic proteins that bind and present foreign peptides to the clonally distributed alphabeta receptors (TCR) of T lymphocytes. As a population, the immature T lymphocytes generated in the thymus express a very diverse set of TCR specificities. A process of positive selection filters this broad repertoire to optimize peripheral T cells for antigen recognition in the context of available MHC products. Only those precursor T cells whose TCRs generate an adequate but not excessive signalling response to self-peptides bound to the expressed MHC proteins undergo successful maturation. Here we show that post-thymic self-recognition facilitates the antigen reactivity of mature T cells. Both experimental and physiological interruption of T-cell contact with self-peptide MHC ligands leads to a rapid decline in signalling and response sensitivity to foreign stimuli. Because the adaptive immune system must be recruited early in an infectious process when antigen is limiting, these findings suggest that positive selection ensures predictable T-cell recognition of available self-ligands, which in turn promotes efficient responses to pathogens.  相似文献   

6.
7.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

8.
A M O'Rourke  M F Mescher 《Nature》1992,358(6383):253-255
In addition to the antigen-specific T-cell receptor (TCR), T cells bear an array of 'accessory' molecules that can contribute to stable adhesion to the antigen-bearing cell and provide costimulatory signals. For several of these, T-cell adhesion to the ligand can be activated by TCR-dependent signalling (a signal from the TCR primes the coreceptor to bind to its ligand). It is unclear whether the individual coreceptors share common mechanisms of priming and cosignalling, and perhaps act in a redundant manner, or whether they act in a distinct way and contribute uniquely to the activation process. We report here the use of isolated alloantigen, class I proteins and fibronectin ligands to show that coreceptors on cytotoxic T lymphocytes are activated sequentially and deliver distinct biochemical signals on binding to their ligands. TCR engagement activates CD8 by a protein tyrosine kinase-dependent pathway, and CD8 then acts as a signal for initiation of polyphosphoinositide hydrolysis on binding to class I. In contrast, activated adhesion to fibronectin does not initiate polyphosphoinositide hydrolysis, but amplifies hydrolysis once it has been initiated. Thus, cytotoxic T-lymphocyte activation involves a TCR-initiated cascade of adhesion and signalling events leading to response.  相似文献   

9.
During their intrathymic differentiation, T lymphocytes expressing alpha beta T-cell receptors (TCR) are negatively and positively selected. This selection contributes to the establishment of self-tolerance and ensures that mature CD4+ and CD8+ cell populations are restricted by the self major histocompatibility complex. Little is known, however, about gamma delta T-cell development. To investigate whether selection operates in the establishment of the gamma delta T-cell class, we have generated transgenic mice using gamma- and delta-transgenes encoding a TCR that is specific for a product of a gene in the TL-region of the TLb haplotype. Similar numbers of thymocytes expressing the transgenic TCR were generated in mice of TLb and TLd haplotypes. But gamma delta thymocytes from TLb and TLd transgenic mice differed in cell size, TCR density and in their capacity to respond to TLb stimulator cells or interleukin-2 (IL-2). In contrast to gamma delta T cells from TLd transgenic mice, gamma delta T cells from TLb transgenic mice did not produce IL-2 and did not proliferate in response to TLb stimulator cells, but they did proliferate in the presence of exogenous IL-2. These results indicate that functional inactivation of self-antigen-specific T cells could contribute to the establishment of self-tolerance to thymic determinants.  相似文献   

10.
Cyclic ADP-ribose (cADPR) is a natural compound that mobilizes calcium ions in several eukaryotic cells. Although it can lead to the release of calcium ions in T lymphocytes, it has not been firmly established as a second messenger in these cells. Here, using high-performance liquid chromatography analysis, we show that stimulation of the T-cell receptor/CD3 (TCR/CD3) complex results in activation of a soluble ADP-ribosyl cyclase and a sustained increase in intracellular levels of cADPR. There is a causal relation between increased cADPR concentrations, sustained calcium signalling and activation of T cells, as shown by inhibition of TCR/CD3-stimulated calcium signalling, cell proliferation and expression of the early- and late-activation markers CD25 and HLA-DR by using cADPR antagonists. The molecular target for cADPR, the type-3 ryanodine receptor/calcium channel, is expressed in T cells. Increased cADPR significantly and specifically stimulates the apparent association of [3H]ryanodine with the type-3 ryanodine receptor, indicating a direct modulatory effect of cADPR on channel opening. Thus we show the presence, causal relation and biological significance of the major constituents of the cADPR/calcium-signalling pathway in human T cells.  相似文献   

11.
Pan F  Sun L  Kardian DB  Whartenby KA  Pardoll DM  Liu JO 《Nature》2007,445(7126):433-436
Feedback regulation of adaptive immunity is a fundamental mechanism for controlling the overall output of different signal transduction pathways, including that mediated by the T-cell antigen receptor (TCR). Calcineurin and Ras are known to have essential functions during T-cell activation. However, how the calcineurin signalling pathway is terminated in the process is still largely unknown. Although several endogenous inhibitors of calcineurin have been reported, none fulfils the criteria of a feedback inhibitor, as their expression is not responsive to TCR signalling. Here we identify an endogenous inhibitor of calcineurin, named Carabin, which also inhibits the Ras signalling pathway through its intrinsic Ras GTPase-activating protein (GAP) activity. Expression of Carabin is upregulated on TCR signalling in a manner that is sensitive to inhibitors of calcineurin, indicating that Carabin constitutes part of a negative regulatory loop for the intracellular TCR signalling pathway. Knockdown of Carabin by short interfering RNA led to a significant enhancement of interleukin-2 production by antigen-specific T cells in vitro and in vivo. Thus, Carabin is a negative feedback inhibitor of the calcineurin signalling pathway that also mediates crosstalk between calcineurin and Ras.  相似文献   

12.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

13.
Cbl-b regulates the CD28 dependence of T-cell activation   总被引:21,自引:0,他引:21  
Chiang YJ  Kole HK  Brown K  Naramura M  Fukuhara S  Hu RJ  Jang IK  Gutkind JS  Shevach E  Gu H 《Nature》2000,403(6766):216-220
Whereas co-stimulation of the T-cell antigen receptor (TCR) and CD28 triggers T-cell activation, stimulation of the TCR alone may result in an anergic state or T-cell deletion, both possible mechanisms of tolerance induction. Here we show that T cells that are deficient in the adaptor molecule Cbl-b (ref. 3) do not require CD28 engagement for interleukin-2 production, and that the Cbl-b-null mutation (Cbl-b(-/-)) fully restores T-cell-dependent antibody responses in CD28-/- mice. The main TCR signalling pathways, such as tyrosine kinases Zap-70 and Lck, Ras/mitogen-activated kinases, phospholipase Cgamma-1 and Ca2+ mobilization, were not affected in Cbl-b(-/-) T cells. In contrast, the activation of Vav, a guanine nucleotide exchange factor for Rac1/Rho/CDC42, was significantly enhanced. Our findings indicate that Cbl-b may influence the CD28 dependence of T-cell activation by selectively suppressing TCR-mediated Vav activation. Mice deficient in Cbl-b are highly susceptible to experimental autoimmune encephalomyelitis, suggesting that the dysregulation of signalling pathways modulated by Cbl-b may also contribute to human autoimmune diseases such as multiple sclerosis.  相似文献   

14.
Participation of CD4 coreceptor molecules in T-cell repertoire selection.   总被引:10,自引:0,他引:10  
During thymocyte development, progenitor cells bearing both CD4 and CD8 coreceptor molecules mature into functional T lymphocytes that express these proteins in a mutually exclusive way. Although T-cell specificity is determined primarily by the structure of the T-cell antigen receptor (TCR) heterodimer, a developmentally regulated process acts to ensure that cells bearing class II-restricted TCRs are CD4+ and those bearing class I-restricted TCRs express only CD8. To investigate this maturation process, we have engineered transgenic mice in which CD4 is expressed in all thymocyte subsets and in all peripheral T cells. Peripheral CD4+8+ T lymphocytes from these mice react with both class I and class II alloantigens. Moreover, expression of the CD4 transgene disrupts the positive selection of doubly transgenic thymocytes bearing a class I-restricted TCR specific for the male (H-Y) antigen. Hence the CD4 coreceptor participates directly in T-cell repertoire selection.  相似文献   

15.
16.
Inhibition of JNK activation through NF-kappaB target genes.   总被引:26,自引:0,他引:26  
G Tang  Y Minemoto  B Dibling  N H Purcell  Z Li  M Karin  A Lin 《Nature》2001,414(6861):313-317
  相似文献   

17.
Delgado P  Fernández E  Dave V  Kappes D  Alarcón B 《Nature》2000,406(6794):426-430
Thymocytes from mice lacking the CD3delta chain of the T-cell receptor (TCR), unlike those of other CD3-deficient mice, progress from a CD4- CD8- double-negative to a CD4+ CD8+ double-positive stage. However, CD3delta-/- double-positive cells fail to undergo positive selection, by which double-positive cells differentiate into more mature thymocytes. Positive selection is also impaired in mice expressing inactive components of the Ras/mitogen activated protein (MAP) kinase signalling pathway. Here we show that CD3delta-/- thymocytes are defective in the induction of extracellular signal-regulated protein kinase (ERK) MAP kinases upon TCR engagement, whereas activation of other MAP kinases is unaffected. The requirement for CD3delta maps to its extracellular or transmembrane domains, or both, as expression of a tail-less CD3delta rescues both ERK activation and positive selection in CD3delta-/- mice. Furthermore, the defect correlates with severely impaired tyrosine phosphorylation of the linker protein LAT, and of the CD3zeta chain that is localized to membrane lipid rafts upon TCR engagement. Our data indicate that the blockade of positive selection of CD3delta-/- thymocytes may derive from defective tyrosine phosphorylation of CD3zeta in lipid rafts, resulting in impaired activation of the LAT/Ras/ERK pathway.  相似文献   

18.
M K Newell  L J Haughn  C R Maroun  M H Julius 《Nature》1990,347(6290):286-289
Effector T cells are restricted to recognizing antigens associated with major histocompatibility complex (MHC) molecules. Specific recognition is mediated by the alpha beta heterodimer of the T-cell receptor (TCR)/CD3 complex, although other membrane components are involved in T-cell antigen recognition and functions. There has been much controversy in this regard over the part played by the CD4 glycoprotein. It is known that expression of CD4 correlates closely with the cell's ability to recognize antigens bound to class II MHC molecules and that CD4 can bind to class II molecules. Also monoclonal antibodies to CD4 can modify signals generated through the TCR/CD3 complex. It has therefore been proposed that CD4 binds to class II molecules, coaggregates with the TCR-CD3 complex and aids the activation of T cells. But given that TCR can itself impart restriction on the cell, it remains unclear whether the contribution of CD4-derived signals to those generated through the TCR alpha beta-CD3 complex is central to this activation. Here we report that when preceded by ligation of CD4, signalling through TCR alpha beta results in T cell unresponsiveness due to the induction of activation dependent cell death by apoptosis. These results imply that CD4 is critically involved in determining the outcome of signals generated through TCR, and could explain why the induction of effector T cells needs to be MHC-restricted.  相似文献   

19.
The signalling thresholds of antigen receptors and co-stimulatory receptors determine immunity or tolerance to self molecules. Changes in co-stimulatory pathways can lead to enhanced activation of lymphocytes and autoimmunity, or the induction of clonal anergy. The molecular mechanisms that maintain immunotolerance in vivo and integrate co-stimulatory signals with antigen receptor signals in T and B lymphocytes are poorly understood. Members of the Cbl/Sli family of molecular adaptors function downstream from growth factor and antigen receptors. Here we show that gene-targeted mice lacking the adaptor Cbl-b develop spontaneous autoimmunity characterized by auto-antibody production, infiltration of activated T and B lymphocytes into multiple organs, and parenchymal damage. Resting cbl-b(-/-) lymphocytes hyperproliferate upon antigen receptor stimulation, and cbl-b(-/-) T cells display specific hyperproduction of the T-cell growth factor interleukin-2, but not interferon-gamma or tumour necrosis factor-alpha. Mutation of Cbl-b uncouples T-cell proliferation, interleukin-2 production and phosphorylation of the GDP/GTP exchange factor Vav1 from the requirement for CD28 co-stimulation. Cbl-b is thus a key regulator of activation thresholds in mature lymphocytes and immunological tolerance and autoimmunity.  相似文献   

20.
The study of human autoimmune diseases has benefited greatly from analysis of animal models. Mice that are homozygous for either the lpr (lymphoproliferation) or gld (generalized lymphoproliferative disease) mutant genes develop a disease characterized by massive lymphadenopathy and autoantibody formation. With age, the lymphoid organs in these mice are replaced with a greatly expanded population of abnormal lymphocytes. Recent work has shown that these cells are likely to be in the T-cell lineage. They rearrange and transcribe the genes for the alpha and beta subunits of the T-cell receptor (TCR) and a third, T-cell receptor-like gene, T gamma. As determined by immunofluorescence with anti-receptor antibodies the cells also express TCR on the cell surface. The murine T-cell receptor consists of the alpha and beta chains, derived from the rearranged alpha and beta genes, in non-covalent association with seven other chains; the delta chain, of relative molecular mass (Mr) 26,000 (26K), the epsilon chain (25K), a glycosylated 21K chain (gp21) which is probably the homologue of the gamma chain of T3 (CD3), a 16K homodimer (zeta) and a 21K dimer (p21). This multichain complex is thought to be the murine analogue of the human T3 complex. After activation of normal T cells by antigen or lectin, p21 is phosphorylated on tyrosine residues and gp21 is phosphorylated on serine residues. In contrast, in the gld and lpr cells, p21 is phosphorylated even in the absence of antigen or lectin, whereas gp21 is not phosphorylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号