共查询到17条相似文献,搜索用时 109 毫秒
1.
基于融合技术的小波变换和数学形态学的边缘检测算法 总被引:1,自引:0,他引:1
针对传统的基于小波变换的边缘检测法无法提取低频区域完整连续的边缘,并且会丢弃包含一些重要细节的高频区域,同时受到噪声的影响而导致边缘提取效果不佳的问题,提出了一种基于融合技术的小波变换和数学形态学的边缘检测算法.在小波域中,对低频子图像采用数学形态学进行边缘检测,对高频子图像先进行小波降噪再采用小波模极大值法进行加权边缘检测,最后采用一定的融合规则对高、低频边缘子图像进行融合.实验结果表明,该方法用于图像边缘提取,不但能有效去除噪声干扰,又能突出边缘细节,边缘定位连续准确. 相似文献
2.
基于边缘检测和小波变换的遥感图像融合算法 总被引:2,自引:0,他引:2
针对多光谱图像和全色图像的特点,提出一种边缘检测和小波变换相结合的遥感图像融合方法。该方法在传统图像小波变换的基础上,选择Canny算子对图像进行边缘检测。在小波域中,在各个尺度层对高频子带采用边缘检测,将边缘点完整保留,低频子带利用加权法,再进行小波逆变换重构融合图像。实验结果显示,该方法在保证光谱信息的同时,能有效地突出边缘细节,更好地保持图像的空间分辨力。与传统小波变换法遥感图像融合相比,信息熵提高了6.63%,清晰度提高了32%,相关系数提高了0.36%。 相似文献
3.
为有效提取噪声较大的航空图像的边缘信息,对基于小波变换和数学形态学相结合的图像边缘检测算法进行了改进,将小波分解后的高频和低频子图分别进行边缘处理。对分解后的低频系数图像采用小波边缘检测方法,而对包含细节较多的高频系数图像则选取合适的结构元素,提出一种新的梯度算子,采用基于小尺度的数学形态学方法进行边缘检测,最后对2种边缘图像采用小波重构方法得到新的边缘图像。 相似文献
4.
一种基于小波变换和数学形态学的边缘检测算法 总被引:1,自引:0,他引:1
结合小波变换和数学形态学的优点,提出了一种基于小波变换和数学形态学的边缘检测算法.基于数学形态学的边缘检测,对现有的检测算子进行改进,构造了一种抗噪型边缘检测算子,并使用不同方向的线型结构元素;基于小波变换的边缘检测能有效地保留图像边缘的细节信息,使提取的边缘完整连续.实验结果表明,本研究提出的算法与几种经典边缘检测算子相比,有效抑制了噪声的影响,提高了检测的精度,对各种不同图像具有很好的鲁棒性. 相似文献
5.
结合小波变换和形态学的优点,针对SAR图像提出了一种改进的边缘检测方法.图像小波分解后,对3个方向的高频子图像分别利用Donoho的软门限阈值去噪,采用不同方向的边缘检测算子进行边缘检测,对低频子图像用形态学的开闭运算去噪后采用腐蚀运算进行边缘检测,利用得到的高、低频边缘子图像进行小波逆变换重构出图像边缘.实验结果表明... 相似文献
6.
提出了一种基于多分辨率小波和二值形态学的边缘检测方法,通过对图像进行多尺度的小波分解,抛弃低频信息来重构小波系数.对重构后的图像利用形态学中的八邻域处理来提取边缘信息.实验结果表明该方法边缘定位准确,对边缘细节的检测效果明显. 相似文献
7.
提出了一种小波变换与多结构元形态学相结合的抗噪边缘检测方法。通过改进的小波边缘提取方法选择噪声图像的突变点,同时滤除部分噪声;针对图像中噪声和边缘形态的不同,建立了多个结构元素,采用多结构元形态检测算子对选取的突变点进行形态操作,在抑制噪声的同时,较好地提取了边缘。基于实验结果,指出对含有不同类型噪声(如椒盐噪声、高斯噪声等)的图像,该方法都可以较好地抑制噪声,提取边缘,且效果优于经典的边缘检测算法。 相似文献
8.
提出了一种小波变换与多结构元形态学相结合的抗噪边缘检测方法.通过改进的小波边缘提取方法选择噪声图像的突变点,同时滤除部分噪声;针对图像中噪声和边缘形态的不同,建立了多个结构元素,采用多结构元形态检测算子对选取的突变点进行形态操作,在抑制噪声的同时,较好地提取了边缘.实验表明,对含有不同类型噪声(如椒盐噪声、高斯噪声等)的图像,该方法都可以较好地抑制噪声、提取边缘,且优于经典的边缘检测算法. 相似文献
9.
本论文提出了一种能保留不同源图像的细节特征的图像融合方法。根据基于小波变换的图像融合框架,多源图像经过几何配准,重采样和精确配准以后,本论文首先对原始图像进行多层小波分解,获取各自的近似低频和细节高频分量,利用边缘匹配原则,得到后选边缘点的图。利用边缘匹配原则,得到后选边缘并对其进行边缘点连接。这样不但得到了重要的边缘点,也几乎全部的去掉了噪声。高频细节分量中边缘点的融合,利用线性加权计算来得到,其它的细节高频分量的小波系数利用常用的融合规则来计算。通过大量的图像融合试验表明,本论文提出的方法较好的对融合了图像的不同源图像的细节特征,较好的取得了理想的试验效果。 相似文献
10.
基于小波变换和数学形态学的图像分割算法 总被引:2,自引:0,他引:2
传统的分水岭变换由于对噪声和细密纹理的敏感会产生严重的过分割现象,为了克服这种缺点,提出了一种基于小波变换和数学形态学的图像分割算法.该方法首先利用小波变换去除红外图像的混合噪声,利用形态学开闭重建运算消除梯度图像中由于灰度非规则扰动和噪声引起的局部极值;最后通过采用基于前景和背景标记的分水岭分割算法进行分割.仿真实验表明,该算法可以实现更好的分割效果,不需要再进行后续的合并处理就能够得到较为理想的结果. 相似文献
11.
综合Canny法与小波变换的边缘检测方法 总被引:6,自引:0,他引:6
提出一种Canny法与小波变换相结合的边缘检测方法.首先,对源图像进行小波分解,在不同分解层上对高频子图像用小波模极大法进行边缘检测,对低频子图像用Canny法进行边缘检测,然后采用一定的融合规则将这两个边缘图像融合在一起,得到一幅完好的边缘图像.这种边缘检测方法结合了小波变换法和Canny法的优点,对用不同方法得到的两种边缘信息进行融合,从而有效地抑制了噪声,保留了连续、清晰的边缘.实验结果表明,这种结合方法要优于单独使用Canny法或小波变换法. 相似文献
12.
边缘作为图像的最主要特征,成为图像信息获取的重要内容.而小波变换具有检测局域突变的能力,而且可以结合多尺度信息进行检测,因此成为图像信息边缘检测的优良工具.文章首先构造了高斯多尺度边界检测算子,然后根据信号边界与噪声边界的小波变换模值跨尺度传递的不同特性,讨论了不同尺度的检测算子检测的边缘所具有的特点,在此基础上提出由边缘传递、继承和生长构成的多尺度边缘关联融合算法.实验结果说明这种特征提取方法不仅有效地降低了噪声,而且融合的边界比较完整,定位准确. 相似文献
13.
14.
基于小波变换的模极大值图像边缘检测算法 总被引:1,自引:1,他引:1
将小波分析技术运用到图像边缘检测中以勾勒图像轮廓,提出了基于小波变换的模极大值边缘检测算法.利用二次B样条小波和Mallat算法对图像进行了边缘检测.仿真结果表明:该方法去噪效果好,能提取图像中较弱的边缘,且边缘具有很强的连续性,明显优于传统的边缘检测算子. 相似文献
15.
张勇 《重庆工商大学学报(自然科学版)》2012,29(2):58-61
一幅图像的大量信息都是由图像边缘提供的,在图像处理中,对于复杂图像很难通过单一的结构元素用数学形态学的膨胀、腐蚀、开、闭等变换以及它们的组合得到较满意的检测图像;利用多元素,对形态结构大小尺度进行调整,从而在噪声存在的条件下得到较理想的图像边缘;实验结果表明,与传统的边缘检测算子比较,方法计算量小,抗噪性好,可以适应不同类型的图像边缘检测需求。 相似文献
16.
徐琼 《四川理工学院学报(自然科学版)》2000,13(2)
基于信号与噪声在不同尺度下小波变换系数模不同的变化特征,提出了一种边缘检测方法,该方法通过对图像的小波变换域中由噪声引起的小波变换系数模进行处理,再利用小波变换系数模局部极大值来提取图像的边缘特征,实验结果说明这种特征提取方法可以有效地降低噪声,同时又较准确地提取出图像的边缘。 相似文献
17.
基于改进二进制小波变换的图像边缘检测算法 总被引:1,自引:0,他引:1
针对传统二进制小波变换在图像边缘检测应用中的不足,提出了基于改进二进制小波变换的图像边缘检测算法.该算法首先按水平、垂直和对角方向对图像进行改进的多尺度二进制小波变换,提取三个方向的小波系数,然后采用相邻尺度小波系数相乘的方法去除图像的噪声.再对去噪后的小波系数乘积极大值点进行检测,最后将这3个方向上的极大点进行融合,形成图像的边缘. 相似文献