共查询到20条相似文献,搜索用时 0 毫秒
1.
针对检测模型参数量大,难以在嵌入式设备上部署等问题,设计了一种改进的YOLOv4目标检测算法.该算法使用轻量化的MobileNetV1替换CSPDarketnet53主干特征提取网络,并将后续网络中的3×3卷积替换为深度可分离卷积,极大地减少了模型的参数量;在检测头加入NAM注意力模块,增强网络对细节信息的提取能力;采用SDIoU Loss作为边框回归损失,在加快收敛速度的同时提高了检测精度.实验表明:与YOLOv4-CSPDarknet53相比,改进算法在PASCAL VOC07+12数据集上训练出来的模型大小为47.19 M,约为原来的五分之一,FPS提升了40(f/s),mAP提升了2.4%.与YOLOv4-Tiny、YOLOv5s、YOLOv7等目标检测算法相比,具有兼顾检测速度与精度的特点. 相似文献
2.
为解决车辆识别中由于拍摄角度和距离的不同,导致成像后的车辆尺寸较小和车辆存在不同程度的遮挡,从而产生车辆的错检和漏检等问题,在单阶段目标检测网络YOLOv4(You Only Look Once version 4)算法的基础上,提出了基于注意力机制的递归YOLOv4目标检测算法,即RC-YOLOv4(Recursive and CBAM You Only Look Once version 4)算法。为提高算法对成像后小尺寸车辆的检测能力,在YOLOv4算法加入CBAM(Convolutional Block Attention Module)模块,该模块结合了通道和空间注意力机制,能帮助网络模型更加关注检测图像中的重点信息和小目标信息。针对车辆部分遮挡的检测问题,采用递归特征金字塔(RFP:Recursive Feature Pyramid)结构加强模型对深层特征信息提取能力,RFP结构类似于选择性增强或抑制神经元激活的人类视觉感知,将主干网络提取到的特征递归融合,然后反馈给主干网络,多次特征融合增强网络对上下文语义信息的提取整合能力。提高了对遮挡车辆的检测精度。实验结果表明,在自... 相似文献
3.
针对复杂交通场景下密集小目标居多、目标尺寸差异大、目标间遮挡严重的问题,提出了一种基于YOLOv4框架的复杂交通场景下的目标检测算法。首先,构造多尺度特征融合提取模块作为主干网络特征提取模块,充分提取不同尺度目标特征信息,同时引入轻量化Ghost模块对主干网络特征进行维度调整;其次,将卷积模块与自注意力机制融合,构造倒残差自注意力模块应用到主干网络深层,深层网络在充分提取局部特征信息基础上获得了全局感知;然后,构造轻量级混合注意力模块,抑制背景噪声,增强密集小目标检测能力;最后,在Udacity数据集上进行实验,检测精度达到了84.41%,相比较YOLOv4, mAP(mean average precision)提高了3.07%,对1 920×1 200分辨率图像的检测FPS(frames per second)可达到49,提高了22.5%,精度提升的前提下实现了较好的实时性,更适用于复杂交通场景下的目标检测任务。 相似文献
4.
由于无人机航拍具有场景复杂多样,目标尺度变化剧烈,高速低空运动模糊等诸多特性,给目标检测带来了很大的挑战。针对无人机航拍目标检测效果不佳的问题,提出了Dy-YOLO模型,在YOLOv5的基础上引入Dynamic Head注意力,从尺度感知、空间位置、多任务3个角度探索具有注意力机制的预测头潜力;设计了C3-DCN结构和Dynamic Head注意力相互配合增强特征提取能力;此外,还使用SimOTA标签分配方式来弥补小样本的损失,并使用CARAFE(content-aware resssembly of features)上采样算子,有效增强了不同卷积特征图的融合效果。在VisDrone2019测试集上,Dy-YOLO检测的平均均值精度达到了38.2%,较基线方法YOLOv5提高了7.1%,同时与主流的检测方法相比也取得更高的检测精度。结果表明,Dy-YOLO算法对于无人机航拍检测任务具有较好的性能。 相似文献
5.
为了解决车辆目标检测中准确率低的问题,提出了一种基于改进YOLOv5算法的车辆目标检测.改进后的YOLOv5算法主要是在原来的基础上通过K-means聚类的方法对数据集中的目标边框进行重新聚类、并将CIoU损失函数和DIoU_nms应用于YOLOv5算法来提高目标识别效果.改进后的YOLOv5算法,目标检测mAP达到了85.8%,比改进前的YOLOv5算法提升了1.3%. 相似文献
6.
为提高自动驾驶中的道路目标检测精度,设计了一种基于YOLOv5的道路目标检测模型。该模型在YOLOv5s的网络模型基础上,将原始的初始锚框聚类算法改为K-means++算法来减小随机带来的聚类误差;并在Backbone中SPP模块之前引入SENet注意力机制,以增强道路目标重要特征并抑制一般特征,达到提高检测网络对道路目标的检测能力。在VOC2012改进数据集上训练、测试,基于改进的YOLOv5s的模型比原始YOLOv5s模型平均准确精度提高了2.4%。实验结果表明,改进的YOLOv5s模型能较好地满足道路目标检测的精度要求。 相似文献
7.
针对无人机平台由于内存、算力有限而导致检测模型部署困难、检测速度降低的问题,提出了一种基于YOLOv4的改进模型.首先,为了减小模型内存占用、节省计算资源,根据目标尺寸特点,对YOLOv4原模型的预测层进行了改进,将三尺度检测模型改进为双尺度检测模型;其次,对双尺度检测模型进行正常训练,然后将其BN层的缩放因子进行稀疏... 相似文献
8.
车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。 相似文献
9.
10.
针对现有多目标跟踪算法参数量和计算量大,难以满足移动设备实时性要求的问题,本文通过改进JDE跟踪算法,提出了一种道路车辆多目标跟踪算法。首先,设计关联融合网络来解决JDE算法中多任务学习存在的竞争问题,提高算法的跟踪精度,减少身份切换次数;其次,使用改进的EfficientNetv2重新构建YOLOv5的特征提取网络,降低模型复杂度,提高模型实时检测速度;最后,使用改进的YOLOv5检测算法与JDE跟踪算法结合,实现道路车辆多目标跟踪。实验结果表明,提出的方法相比原JDE跟踪算法,MOTA提高0.3个百分点、跟踪速度提高约43.2%,可以满足实际自动驾驶场景中对车辆跟踪的速度要求。 相似文献
11.
针对现有多目标跟踪算法参数量和计算量大,难以满足移动设备实时性要求的问题,本文通过改进JDE跟踪算法,提出了一种道路车辆多目标跟踪算法。首先,设计关联融合网络来解决JDE算法中多任务学习存在的竞争问题,提高算法的跟踪精度,减少身份切换次数;其次,使用改进的EfficientNetv2重新构建YOLOv5的特征提取网络,降低模型复杂度,提高模型实时检测速度;最后,使用改进的YOLOv5检测算法与JDE跟踪算法结合,实现道路车辆多目标跟踪。实验结果表明,提出的方法相比原JDE跟踪算法,MOTA提高0.3个百分点、跟踪速度提高约43.2%,可以满足实际自动驾驶场景中对车辆跟踪的速度要求。 相似文献
12.
针对目标检测YOLOv4算法在肺结节检测中存在的小目标漏检和肺结节位置失真等问题,设计了一种改进的YOLOv4肺结节检测算法.在原始YOLOv4网络的基础上,将特征融合网络的上采样过程替换为双线性插值法,并采用张量堆叠的方法使顶层的语义信息与底层的位置信息形成更高通道的特征张量.实验结果表明,与原始的YOLOv4算法相比,改进的YOLOv4算法在公开数据集LUAN16上的平均精确度与预测速度分别提高了4.54%和28.1%,可视化结节位置表达更精准. 相似文献
13.
针对传统的行人车辆目标检测算法因参数量大和计算复杂度高而在现实应用中受限的问题,基于轻量化深度学习网络提出改进的YOLOv5s行人车辆目标检测算法.首先,选用ghost模块替换主干网络中部分卷积模块进行模型剪枝,同时向网络中引入注意力机制,使得网络在减少模型参数量和提升模型性能两方面实现更好的平衡;其次,采用边界框的宽高差值计算代替边界框回归损失函数中宽高比距离的计算,加速网络的收敛;最后,通过构建真实交通场景下的行人车辆目标检测数据集检验模型的准确性和实时性.实验结果表明,在保持原算法较高精度的同时,改进后YOLOv5s算法的参数量下降28%,模型大小降低27%,节省了硬件成本,拓宽了YOLOv5s算法的应用场景. 相似文献
14.
绝缘子缺陷检测是电网巡检过程中重要的一环,为提高绝缘子缺陷检测的精度,该文提出一种基于改进YOLOv5算法的绝缘子缺陷检测算法——YOLOv5t,能够在保证网络运行速度的条件下,提升网络的检测精度.该算法在YOLOv5s的基础上,将三重注意力机制(triplet attention)添加到骨干网络中,给予每个特征通道不同的权重,以提高网络的检测精度;并采用CIoU Loss作为网络回归损失的损失函数,提升网络的收敛速度;同时将Soft-NMS作为网络的预测结果处理方法,降低网络的漏检率.YOLOv5t与几种常用的缺陷检测网络的对比实验结果表明,YOLOv5t的准确率达到97.2%,召回率达到98%,平均精度均值达到99.1%,较YOLOv5s算法分别提升了0.9%、5.1%和2.1%,并且检测速度没有受到影响. 相似文献
15.
基于遥感影像的海洋目标图像具有多尺度、形状变化大、颜色暗淡、目标边界不清、图像模糊等特点,需要在现有的目标检测算法上进行改进,以满足遥感影像海洋目标检测及分类需要。针对这些问题,在You Only Look Once version 5 (YOLOv5)的网络架构中引入Selective Kernel Networks (SKNet)注意力模块,提出一种新的SK-YOLOv5网络,增强网络对多尺度复杂海洋目标的特征提取和自适应能力。经对比实验测试,在相同的海洋目标数据集上,改进后的网络比原网络整体检测及分类准确率提升了约9%。 相似文献
16.
针对YOLOv4目标检测器存在信息利用率不足的问题,提出了一种新的基于改进的路径聚合和池化YOLOv4的目标检测方法 YOLOv4-P。为了充分利用路径聚合可以有效防止信息丢失这个特点,对YOLOv4的路径聚合网络进行改进,利用主干特征提取网络的第二个残差块,新增一个检测层,加强融合浅层特征层。另外,使用K-means聚类对数据集重新进行处理,获得合适的先验框尺寸。此外,图像经过主干特征提取网络后的感受野比理论感受野小,为了增大感受野,在主干特征提取网络的后端加入金字塔池化模块,利用4种不同尺度的金字塔池化引入不同尺度下的特征信息。最后,在PASCAL VOC2007和VOC2012进行仿真实验,实验结果表明,提出的YOLOv4-P有效提高了检测精度。 相似文献
17.
针对现有的无人机检测算法无法同时兼顾检测速度及检测精度的问题,本文提出了一种基于YOLOv5s(You Only Look Once)的轻量化无人机检测算法TDRD-YOLO(Tiny Drone Real-time Detection-YOLO).该算法首先以YOLOv5s的多尺度融合层和输出检测层分别作为颈部网络和头部网络,引入MobileNetv3轻量化网络对原骨干网络进行重构,并将骨干网络后的通道在原YOLOv5s的基础上进行压缩,减小网络模型大小;其次,将骨干网络中Bneck模块的注意力机制由SE修改为(Convolutional Block Attention Module,CBAM)并在颈部网络引入CBAM,使网络模型更加关注目标特征;最后修改颈部网络的激活函数为h-swish,进一步提高模型精度.实验结果表明:本文提出的TDRD-YOLO算法平均检测精度达到96.8%,与 YOLOv5s相比,参数量减小到原来的1/11,检测速度提升1.5倍,模型大小压缩到原来的1/8.5.实验验证了本文算法可在大幅降低模型大小、提升检测速度的同时保持良好的检测性能. 相似文献
18.
车辆检测是智能交通系统的关键技术之一,对实时性和准确性有较高的要求。对此,文章提出了一种基于You Only Look Once(YOLO)v3改进的车辆检测算法,该算法能够确保实时检测的前提下,大幅度提高检测准确率。首先,改进了YOLOv3的特征提取网络,使用跨阶段残差模块替换原有残差模块。该结构的特征重用特性可以有效提高提取特征的效率;其次,设计了一种新的特征融合网络,通过融合不同深度网络层的特征信息,进一步提高了算法的检测准确性。实验结果表明,与原YOLOv3相比,该算法既满足检测实时性,平均精确率(mean Average Precision,mAP)又提高了8.7%。 相似文献
19.
根据以往钢铁表面缺陷检测技术的检测效能较低、准确性低的情况,提出一种改进YOLOv5s的钢材表面缺陷检测算法。主要改进为:加入坐标注意力机制(Coordinate Attention,CA)的空洞空间卷积池化金字塔 (Atrous Spatial Pyramid Pooling,ASPP),扩大模型感受野和多尺度感知能力的同时能更好的获取特征位置信息;加入改进的选择性内核注意力机制(Selective Kernel Attention,SK),使模型能更好的利用特征图中的频率信息,提升模型的表达能力;将损失函数替换为SIoU,提升模型性能的同时加快模型的收敛。实验数据表明,改进的YOLOv5s网络模型在NEU-DET数据集上的mAP值为78.13%,相比原网络模型提高了2.85%。改进的模型具有良好的检测型性能的同时检测速度为103.9 FPS,能够满足实际应用场景中钢材表面缺陷实时检测的需求。 相似文献
20.
扣件的健康状态是保障轨道车辆正常运行的关键。当前人工检测轨道扣件效率较低,具有缺陷性。针对这一问题,提出了基于改进YOLOv4算法的轨道扣件与检测。在YOLOv4网络中,利用CSPDarknet53第二个残差块嵌入conv卷积结构与YOLO头部结构,增加输出端,并进行网络中的上采样与下采样。与YOLOv4原算法模型相比,提升了准确率与检出率。将使用改进YOLOv4的方法,实现对有砟轨道与无砟轨道上扣件的状态检测。试验结果表明:基于改进YOLOv4算法检出率和准确率比原YOLOv4算法分别提升4.65%和4.88%,并且YOLOv4模型体积与其他模型相比更小,适用于轨道扣件检测。 相似文献