首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
应用计算流体力学方法,采用重叠网格策略,对2个简化DrivAer模型的弯道会车进行了数值模拟,研究了绝对速度、相对速度和横向间距改变情况下,两车气动六分力的变化规律.结果表明:车辆在极短的会车过程中,侧向力、侧倾力矩和横摆力矩都发生了方向的变化,迅速达到各自的正负极值,并且随着车辆行驶速度的增加,这种变化趋势更加明显;相对速度改变时,车辆周围流场的相互干扰随着速度的增加而不断增强;在间距改变条件下,气动力峰值随着会车间距的减小而增加,这些都会对车辆的操纵稳定性带来一定的影响.  相似文献   

2.
应用计算流体力学(CFD)中的动网格技术,模拟由于流域边界运动引起的模型运动状态随某一变量变化的流动情况,结合新版公路工程建设标准,对在一级公路和三级公路上的迎面会车过程进行瞬态气动特性仿真研究,根据仿真结果分析速度和间距对汽车稳定性的影响.结果表明:不同间距、不同速度的会车侧向力呈现不稳定波动的变化曲线,并伴有极值出现,侧向力负向最大值出现在两车头平齐时,正向最大值出现在两车身平行时.此仿真结论与在道路行驶过程中的真实会车情况相吻合,可为道路建设和行车安全提供参考.  相似文献   

3.
以某轿车实车为研究对象,应用滑移交界面和动网格技术对该轿车会车过程中的瞬态外流场进行了数值模拟,得到了会车过程中该轿车的阻力系数和侧力系数的瞬态变化趋势,结合流场剖面上的压力场和速度场,分析了这种变化趋势的原因,总结了会车过程中汽车瞬态气动特性.研究结果表明:在会车过程中两车周围的流场相互影响,车身受到的气动力在极短的时间内发生剧烈变化.当轿车与轿车会车时,轿车的气动阻力系数呈负正弦,侧力经历两个波峰和一个波谷.二者的变化不同步.当轿车与卡车会车时,轿车的阻力系数、侧力系数的变化趋势更复杂、更剧烈.  相似文献   

4.
以某轿车和卡车为研究对象,采用动网格和滑移交界面技术,对两辆车超车过程中外部流场进行了数值模拟研究,得到两车的阻力和侧力的瞬态变化趋势。同时通过截取流场剖面上的压力场和速度场,分析并总结超车过程中汽车的瞬态气动特性。仿真结果表明:在超车过程中两车周围的流场相互变化影响,车身受到的气动力在极短的时间内发生剧烈变化;两车的气动力变化趋势不一样,而且二者的变化不同步;轿车的气动阻力呈先增大,当两车车头的距离(X)与轿车车身长(L)之比为0.75时达到最大值,而后减小,最后恢复常态值;轿车的气动侧力有呈类正弦曲线的变化,即当X/L=-2.5和X/L=0.75时达到正向和反向的最大值;卡车的气动力变化趋势更复杂,且达到峰值的时刻与轿车的不同。  相似文献   

5.
轿车大客车会车时的气动特性   总被引:5,自引:1,他引:4  
应用计算流体力学数值模拟方法,采用滑动交界面和动网格技术,对开阔路面下轿车大客车会车过程的瞬态流动进行气动特性研究.车辆模型采用MIRA典型阶背式轿车全尺寸模型和进行过风洞试验的国产JT6120型大客车简化模型.通过对会车过程流场的分析和对模拟结果的统计处理,获知了轿车大客车会车前后气动力系数变化趋势以及产生该变化的原因,得到了轿车大客车会车过程中定量的气动力变化规律.结果表明:轿车大客车会车过程气动力系数有很大变化,其中轿车的更大一些;两车气动力系数随时间的变化趋势有差异;会车状态的空气动力学作用对汽车操纵稳定性有重要影响.  相似文献   

6.
隧道内超车瞬态气动稳定性影响的数值仿真研究   总被引:1,自引:0,他引:1  
从行车安全方面考虑影响隧道内超车车辆直线行驶性能和操纵稳定性能的因素。从空气动力学角度,以某轿车实车缩比模型为研究对象,采用滑移交界面和动网格技术和STAR-CD软件对隧道内2辆车超车过程的外流场进行瞬态数值模拟。考虑到影响气动力稳定性的因素,选取隧道内2种不同侧向间距(2辆车之间)同种相对车速及同种侧向间距3种不同相对车速4种工况进行对比分析。仿真结果表明:超车过程中被超车的气动力变化更为剧烈,各种工况下的变化趋势都呈类正弦曲线,工况Ⅰ和工况Ⅱ的变化幅度尤为明显,直线行驶性能和操纵稳定性能相对较差;而超车过程对主超车流场影响相对较小,气动力变化不是很明显。  相似文献   

7.
采用网格变形和局部网格重构的动网格技术对超车过程进行二维瞬态模拟,并记录不同超车位置处的模拟数据.研究结果表明:相对超车速度增加,两车侧向力均增大;超车间距增大,两车侧向力均减小;主超车长度增加,主超车侧向力增大,被超车侧向力减小;主超车宽度增加,主超车侧向力减小,被超车侧向力增大;在设计汽车时,选择合理的车身长度与宽度能够降低车辆在复杂工况下的侧向力,提高气动稳定性.超速超车使两车侧向力变化更加剧烈,车辆的操纵稳定性有被破坏的倾向,对公共交通安全有潜在危害.在实际超车时,驾驶人员降速并适当增加超车距离,可以确保安全超车,这对于交通安全系统的发展有一定指导意义.  相似文献   

8.
考虑前后车速度关系的车辆跟驰模型   总被引:5,自引:0,他引:5  
分析了传统车辆跟驰模型的局限性,建立了考虑前后车速度关系的车辆跟驰模型:前后车以相同速度匀速行驶时的跟驰模型;前后车以不同速度匀速行驶,后车速度小于前车速度时的跟驰模型;前后车以不同速度匀速行驶,后车速度大于前车速度,当前车速度不变时的跟驰模型和前车减速时的跟驰模型.以四种跟驰模型为基础,分别建立了相应的速度一间距关系和车辆追尾模型.追尾模型表明:最小车头距离是后车速度的二次函数,随后车速度急剧缩小;当实际车头距离小于该值时,则会发生追尾事件.  相似文献   

9.
由于驾驶员在感应车间距变化时存在时变滞后的问题,且其灵敏度随着不同的车速和车间距在一定范围内波动,为了准确描述车辆在行驶过程中的运行状态,文中在耦合映射(CM)跟驰模型基础上,提出了一类模糊滞后CM跟驰模型,并对该模型的稳定性进行了分析.利用Lyapunov函数给出了模糊控制器存在的充分条件,使闭环跟驰系统满足稳定性,即交通拥挤现象能够得到有效抑制,并通过求解线性矩阵不等式(LMI)得到所设计的控制器.仿真实验表明,在该模糊控制器作用下,各辆车的速度震荡幅度得到了有效的降低,且能够更快地恢复到平稳状态,同时有效降低了车辆的二氧化碳排放量,说明该方法对于抑制交通拥挤和降低二氧化碳排放量是有效的.  相似文献   

10.
轿车尾随集装箱车外流场计算仿真分析   总被引:1,自引:0,他引:1  
利用计算流体力学(CFD)软件对一辆小轿车尾随一辆集装箱车的过程进行了数值模拟,得到了在尾随过程中小轿车的气动阻力系数和气动升力系数相对变化曲线图.通过仿真结果可以得出尾随的过程中,轿车的气动阻力系数随两车间距离的减小先降低,当两车间距达到2倍的轿车车长时,气动阻力系数达到最小,随着间距的进一步减小气动阻力系数增大;而轿车的气动升力系数在车距小于2倍轿车车长时随车距的减小而增大,当两车间距为轿车车长时气动升力系数达到单独一辆车行驶时的2倍.通过计算可以得出在气动阻力系数最小时轿车省油13.7%的结论.  相似文献   

11.
以大跨度桥梁结构为对象,将小波变换技术与行驶车辆的车轮轴间距和车速状态监测相结合,提出一种针对大跨度桥梁结构车轮轴间距和车速监测的数据处理方法,并以香港青衣南大桥为对象,完成了基于实测数据的车轮轴间距和车速状态识别的验证。结果表明:采用离散小波变换(DWT)技术可实现低噪声情况下大型混凝土桥梁上车辆的车轮轴间距、车速和车辆进入/离开桥梁时间间隔的监测;车速监测精度相对高于车轮轴间距精度,且桥梁自身特性对结果精度有所影响。  相似文献   

12.
为探明不同线间距下600 km/h高速磁浮列车明线交会时的气动特性,基于三维、非定常、可压缩的N-S方程和SST k-ω湍流模型,采用重叠网格技术,分析列车明线交会时的车身周围流场结构、列车交会压力波和列车侧向力,通过动模型试验来验证数值模拟方法的准确性。研究结果表明:在不同线间距下,列车交会时的车身周围流场分布特征相似,随线间距增大,列车尾涡展向角逐渐增大,两交会侧车身之间流场的速度和压力不断减小;不同线间距下的列车压力波变化规律一致,压力波幅值与列车运行速度的二次方近似呈正比,当线间距由5.1 m分别增大至5.6 m和6.1 m时,压力波幅值分别减小28.2%和42.4%,且增大线间距对列车压力波正波缓解作用比负波的大,头波的缓解作用比尾波的大;列车交会过程中头车侧向力幅值比尾车和中间车的幅值大,增大线间距对尾车侧向力的缓解作用比头车和中间车的大,当线间距由5.1 m增大至6.1 m时,头车、中间车和尾车的侧向力幅值分别减小33.8%、34.1%和35.7%。  相似文献   

13.
应用计算流体力学方法,采用重叠网格的策略,对两个简化SAE模型的弯道会车进行了数值模拟研究,获得了两车气动六分力的变化规律.在极短的会车过程中,侧向力、侧倾力矩和横摆力矩都发生了方向的变化,迅速达到各自的正负极值,处在内侧弯道车辆1的侧向力、侧倾力矩和横摆力矩的值略大于外侧弯道车辆2.升力和纵倾力矩也发生了数值和方向的改变,这些都会对车辆的行驶稳定性带来一定的影响,为进一步研究弯道会车的瞬态气动特性提供了理论参考.  相似文献   

14.
为分析具有侧向自由度的半挂汽车列车行驶特性,建立了包含车身侧倾和转向系刚度的车辆模型,对车辆在典型工况下的运行状态进行仿真分析;并对模型中的牵引鞍座参数进行调试和匹配,分析这些参数变化对系统稳定性的影响,以期为车辆系统设计提供参考依据.研究结果表明,行驶状况和牵引鞍座参数的变化,可能造成车身侧倾、两车存在夹角等,应通过...  相似文献   

15.
基于DES的车辆横风气动性能模拟   总被引:1,自引:0,他引:1  
采用分离涡模拟(DES)方法,就横风对车辆侧向气动性能的影响进行数值计算。结果表明:随着风向角的增大,车辆的气动力系数均单调增大,当风向角为90°时达到最大值;在小风向角的情况下,头车的气动力系数最大,尾车最小。对静止车辆来说,车体前端和尾端的流场结构具有较强的对称性,在车辆的头、尾部均会产生脱落涡,且向列车的中部发展,与从风挡处气流分离产生的脱落涡干涉、融合,形成复杂的湍流结构,而中间车则受头、尾车的影响较小,在背风侧产生规则的脱落涡;同时尾涡内流速较低。对运动车辆来说,气流会在头车前端背风侧的上、下部产生2个脱落涡,并沿着车长方向发展,上部的脱落涡和从风挡处产生的脱落涡融合叠加,而下部的脱落涡则不受风挡的影响,同时漩涡内速度较高。  相似文献   

16.
自动驾驶汽车有着极大的应用潜力且高速公路环境下车辆变换车道是常见的行为。为进一步分析高速公路中自动驾驶汽车的微观换道决策,本文定义道路不满意度来表示车辆对行驶道路的不满意程度并将车辆换道意图的产生按本车是否达到目标车速而分为两类,当本车达到目标车速时为第一类,换道意图产生源于本车与前车间距的减小和本车相对于前车速度的增加。当本车未达到目标车速时为第二类,换道意图产生源于本车与前车间距的减小和本车达到目标车速时相对于前车移动距离的增大。针对不同类换道意图的产生机制,结合模糊推理设计道路不满意度算法。换道决策利用当前行驶车道和邻近车道的道路不满意度大小、安全跟车距离、换道安全距离来综合决定换道意图的发生。最后在MATLAB环境下搭建自动驾驶环境并仿真换道决策模型,结果显示本文相比其它换道决策,本文不仅考虑换道安全而且也考虑了目标车道和本车道的跟车安全,更具有实际意义。同时本文的模糊换道决策能兼顾安全性和智能性且适用于依目标车速定速巡航、为达到目标车速而加减速等多种复杂工况下的换道情况。  相似文献   

17.
为了分析沉降变形后路面结构对车辆行驶振动特性的影响作用,采用两自由度1/4车辆模型及随机激励与离散型激励相结合的路面模型建立车辆路面耦合系统,以车身垂向振动加速度为指标,分析了路面变形模式、车辆参数、车辆行驶速度、行驶方向等因素对车辆行驶振动响应量的影响规律。研究结果表明:绝对沉降量相同时,不同路面变形模式下车辆垂向振动加速度相差为32.2%~84.6%,车身垂向振动加速度对大于80km/h的车速变化较为敏感,路面破坏变形模式与车辆行驶速度是影响车辆振动特性的主要因素,制定基于车辆振动特性的沉降控制标准时,应针对不同沉降变形模式与不同车速分别制定相应的控制标准。  相似文献   

18.
为研究车速变化对车辆平顺性的影响,建立了考虑车速变化时纵向惯性力影响与白噪声频率时变的路面随机输入1/2车悬架动力学模型.其中,白噪声频率时变的路面输入模型是利用Matlab/Simulink软件的Lookup Table模块,针对实时的车辆行驶距离对空间路面随机激励模型查表来获得.数值仿真结果表明:车速变化对轮胎动变形、簧载质量加速度及车身俯仰角加速度指标基本没有影响,但使悬架动挠度指标明显变差,且车速变化越剧烈及悬架刚度越小,上述现象越明显.采用减小车辆质心至0.8倍与增大悬架刚度至1.1倍的改进时,牺牲簧载质量加速度指标6.96%和车身俯仰角加速度指标0.89%,可使前后悬架动挠度指标分别得到20%与17.6%的明显改善.  相似文献   

19.
以某一匝道公路连续曲线箱梁桥为例,分析了该类桥梁的空间车桥耦合振动响应及冲击系数.考虑桥梁阻尼比和桥面平整度的影响,采用通用软件ANSYS模拟桥梁,车辆简化为16自由度模型,采用模态综合法编制了公路曲线车桥耦合振动响应MATLAB程序,研究了多车荷载作用下连续曲线箱梁桥的动力响应.研究表明:主梁竖向挠度冲击系数受横向加载车辆数量的影响较小,跨中截面外腹板动力响应最大,建议采用外腹板处冲击系数进行设计.当纵向车辆间距一定,车速低于22 m·s~(-1)时,冲击系数在单车工况下最大,且随着纵向加载车辆数量的增多而显著减小;当车速超过22 m·s~(-1)时,纵向两车和三车工况下,主梁冲击系数有围绕单车工况下冲击系数曲线上下波动的趋势.纵向车辆间距对设计时选取的冲击系数影响较小.  相似文献   

20.
为了缓解雨雪气象条件下桥隧连接段的交通安全运行问题,采用Carsim仿真分析软件,建立车辆-道路三维模型,通过侧向偏移量和横摆角速度2个评价指标,系统地模拟分析雨雪气象条件下C级标准车在桥隧连接段行驶的稳定性,定量分析行车速度、路面摩擦因数、圆曲线半径对桥隧连接段行车稳定性和车辆横向稳定性能的影响。研究结果表明:侧向偏移量与横摆角速度对行车稳定性的评价具有一致性,当侧向偏移量和横摆角速度指标的值越小、越稳定,车辆行驶越安全;车辆速度与行车稳定性呈负相关,路面摩擦因数和圆曲线半径与行车稳定性呈正相关,即降低车速、增大路面摩擦因数和圆曲线半径均可有效地减小车辆的侧向偏移量。在雨雪气象条件下桥隧连接段的特殊行车环境下,车辆设计速度由80降低至75 km/h,降低了6.25%;路面摩擦因数增大至0.21、圆曲线极限最小半径由250增至265 m,增大了6%;二者均可保证车辆不发生大幅度侧滑,并能提升车辆行驶的稳定性和安全性,可为山区高速公路设计规划和交通运营管理提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号