首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EGSB反应器污泥床工作特性及污泥性质的研究   总被引:3,自引:0,他引:3  
研究了膨胀颗粒污泥床(EGSB)反应器在处理高浓度肠衣废水过程中,液体表面上升流速对污泥床工作状态的影响。在COD的质量浓度为5 135.4~5 630.0 mg/L,适宜的上升流速为1.60~2.62 m/h。在此条件下,反应器内的污泥床呈膨胀状态,无不良工作状况,容积负荷在221.60~310.24 kgCOD/(m3.d)之间,COD去除率最高达82.6%,处理效果良好。反应器内的厌氧污泥性质发生了较大变化。颗粒污泥表面和内部的细菌种类和数量越来越丰富;污泥粒径也明显变大,粒径分布主要集中在0.9~2.0 mm范围内;胞外聚合物的量有所增加。  相似文献   

2.
低温条件下(15~3℃),在活性污泥法处理城市污水实验室研究过程中,对污泥浓度、污泥沉降性能、粒度、胞外聚合物(EPS)、脱氢酶活性、摄氧速率、污泥膨胀进行了研究。研究结果表明:随着温度降低,污泥沉降性能变差,引起沉降性能变差的原因是污泥浓度与胞外聚合物共同作用的结果;温度降低过程中,胞外聚合物分泌量呈增大趋势;微生物活性降低,并在15~13℃间降低变化明显;产生污泥膨胀现象的原因可能是丝状菌黏性物质分泌过多造成的。  相似文献   

3.
好氧颗粒污泥的快速培养与污泥特性分析   总被引:1,自引:0,他引:1  
为研究不同沉淀时间对污泥颗粒化过程的影响,采用序批式反应器,通过逐步缩短沉淀时间快速培养出好氧颗粒污泥.研究结果表明:在此过程中,污泥浓度逐渐降低,沉降性逐渐改善,污泥中无机质含量逐渐增加;不同沉淀时间所培养的污泥粒径不同,且污泥平均粒径与沉淀时间具有很好的负相关性;只有沉淀时间小于5min,才能形成颗粒污泥.污泥胞外聚合物(EPS)含量分析结果表明多糖在污泥颗粒化过程中起主要作用;在沉淀时间从7 min缩短至5 min的污泥颗粒化过程中,胞外聚合物中多糖的含量(以VSS计)由(140.98±19.54) mg/g增加到(310.79±50.86) mg/g;缩短沉淀时间是序批式反应器中快速培养好氧颗粒污泥的有效策略,且污泥快速好氧颗粒化要求的沉淀时间不能长于5 min.  相似文献   

4.
不同活性污泥中污泥质量浓度对沉降性的影响   总被引:1,自引:0,他引:1  
为了考察污泥质量浓度对活性污泥沉降性的影响,采用100 mL量筒进行批沉降试验,分别研究了不膨胀污泥、丝状菌膨胀污泥和非丝状菌膨胀污泥在不同质量浓度下的沉降性能.结果表明,当质量浓度过低时,所有污泥都具有沉速快,泥水分界面模糊,沉后上清液浑浊的特性.当质量浓度升高时,沉速都会减慢,且泥水分界面分别因拥挤沉淀(不膨胀污泥)和交联分离(膨胀污泥)作用而变得清晰.当用污泥沉降比(SV)来表征沉降性时,不膨胀污泥对质量浓度变化敏感,而膨胀污泥则一直保持在90%以上.当用污泥容积指数(SVI)来表征沉降性时,对不膨胀污泥取沉降60 min的SVI可消除质量浓度的影响.对膨胀污泥需要设定一个特定质量浓度下的标准值,其他质量浓度下的SVI按照反比例关系换算到该质量浓度下再进行比较.  相似文献   

5.
研究了膜生物反应器中非丝状菌膨胀的原因以及此类膨胀对污泥混合液过滤性能的影响和通过污泥黏度、胞外聚合物和污泥颗粒粒径三方面对膜生物反应器中的污泥混合液进行了分析;运用死端过滤实验方法,研究了非丝状菌膨胀时污泥混合液过滤性能的影响,实验结果表明,污泥沉降性能与污泥黏度有较好的相关性,活性污泥中的胞外聚合物是引起非丝状菌膨胀的关键因素;膜生物反应器中污泥非丝状菌膨胀主要因反应器中累积的高浓度胞外聚合物所致;非丝状菌污泥膨胀极大影响了污泥混合液的过滤性能,污泥膨胀后过滤阻力急剧增大.  相似文献   

6.
实验考察了厌氧膨胀床反应器(EGSB)处理木薯酒精废水的启动、运行和基质产沼气转化特性.结果表明,高温EGSB反应器接种中温颗粒污泥,需20d即可完成启动,反应器故障停运54d后进行二次启动的时间仅需10d.EGSB适宜的有机负荷是10~14kg·m-3·d-1(以COD计),稳定运行期间对化学需氧量(COD)的去除率在80%~90%之间,在标准状态下的产沼气转化率(BCR)为0.315m3·kg-1.试验期间反应器内的污泥颗粒化程度良好,直径2mm以上的大颗粒污泥增长迅速.260d时污泥挥发性悬浮固体(VSS)与总固体(TSS)质量浓度之比ρVSS/ρTSS由接种时的0.51变为0.84.启动和运行期,出水pH值随着COD去除率的变化而波动,可以通过系统出水pH大小来初步判断EGSB的运行状况.  相似文献   

7.
采用SBR工艺分别研究了不同盐度、不同有机负荷驯化下的活性污泥的生物相、污泥的沉降性能、COD去除率和出水浊度,结果表明,SBR工艺处理含盐有机废水有机负荷在0.15 kgCODCr/kg MLSS.d,盐度在25 g/L NaCl下运行,CODCr的去除率达到86%,而在高负荷和高盐度环境下容易诱发污泥膨胀.  相似文献   

8.
次氯酸钠强化二价铁盐混凝能够有效提升含藻污泥的脱水性能与效果。当NaClO质量浓度为1.5~2.0 mg·L-1时,含藻污泥的脱水性能达到最佳。过量NaClO的氧化作用使得藻细胞完整性受损,胞内物质外溢,阻碍了细胞间水分的释放,导致脱水性能下降。Fe2+被NaClO氧化后原位生成Fe3+,继而形成Fe(OH)3,强化了高藻水的混凝效果;NaClO使得部分亲水性胞外聚合物降解,其中蛋白质和多糖等组分含量降低,有利于藻细胞间水分释放,从而提高了含藻污泥的脱水性能。此外,NaClO强化二价铁盐混凝对溶解性有机物的去除率由74%上升至90%,腐殖质类大分子和芳香族化合物的含量也有所下降,提升了水质净化效果。  相似文献   

9.
对低剂量臭氧在剩余活性污泥减量中的应用进行了探讨.结果表明,当活性污泥进行低剂量臭氧(≤0.010 mgO3/mgMLSS)处理时,可取得较好的减量化效果.当臭氧投加剂量为0.010 mgO3/mgMLSS时,反应60 min活性污泥的总去除率达到77.73%.臭氧处理会同时导致溶解性化学需氧量(SCOD)的增加.臭氧投加剂量为0.005 mgO3/mgMLSS时污泥中的SCOD增加至20.28 mg/gMLSS·L.污泥沉降比(SV%)减少率随臭氧投加剂量的增大呈线性增加趋势.低剂量处理后的污泥容积指数(SVI)值在58~62 mg/L之间,污泥的沉降性能良好,并未产生污泥膨胀现象.  相似文献   

10.
采用SBR反应器,系统地研究不同质量浓度Zn(Ⅱ)长期作用对好氧颗粒污泥基本性能和污染物去除功效的影响。试验结果表明:当ρ(Zn(Ⅱ))≤5 mg/L时,Zn(Ⅱ)对好氧颗粒污泥基本性能与污染物去除功效影响较小;当ρ(Zn(Ⅱ))≥10 mg/L时,Zn(Ⅱ)会导致好氧颗粒污染物去除功效降低,混合液悬浮固体(MLSS)质量浓度、沉降速率、污泥粒径与结构发生改变。10 mg/L以上的Zn(Ⅱ)长期作用会导致污泥粒径变小,结构松散,进而导致污泥沉降性能变差,最终引起ρ(MLSS)下降。Zn(Ⅱ)作用76 d后,投加10 mg/L和15 mg/L Zn(Ⅱ)的反应器内NH+4-N、COD去除率分别减低为84.3%和75.1%、90.1%和85.7%;ρ(MLSS)分别降至3 658 mg/L和3 225 mg/L;SVI分别升高至94 m L/g和99 m L/g;颗粒污泥的平均粒径分别降至0.58 mm和0.37 mm,部分颗粒污泥解体。  相似文献   

11.
为了深入研究黏性膨胀与丝状菌膨胀的异同, 采用 SBR 反应器, 系统地考察了黏性丝状菌膨胀和丝状菌膨胀状态下污泥的脱氮除磷特点。试验结果表明, 在 pH 7. 2 ~8. 0, 温度 22 ~24℃的条件下, 提高好氧阶段的溶解氧(DO) 可以保证氨氮硝化过程不受黏性膨胀的影响。对于黏性膨胀来说, 黏附在污泥表面的胞外聚合物(EPS)会使絮体内部形成缺氧微环境, 有助于同步硝化反硝化(SND)的发生。其好氧阶段的 SND 率要比丝状菌膨胀高出47. 80% , 导致黏性膨胀污泥的硝化过程易出现亚硝酸盐的积累。黏性丝状菌膨胀比丝状菌膨胀会更加恶化污泥的沉降性能, 且污泥的除磷性能也有退化趋势, 其比释磷速率和比吸磷速率较丝状菌膨胀污泥分别降低了17. 65%和25. 00% 。  相似文献   

12.
以铁棒(零价铁)为阴阳电极,通过电解活化过一硫酸盐(PMS)用于改善污泥的过滤及破解效能.结果表明:在电解活化PMS处理污泥过程中,当电流为0.2 A,1 g干污泥(DS)投加130 mg PMS时,显著降低污泥的毛细吸吮时间,降幅达到43.8%,同时破坏胞外聚合物质(EPS)和污泥细胞;污泥中的紧密束缚型胞外聚合物质(TB-EPS)转化为溶解型胞外聚合物质(S-EPS),导致TB-EPS中1 g挥发性悬浮固体产生的总有机碳从14.09 mg降到8.08 mg,S-EPS中1 g挥发性悬浮固体产生的总有机碳从1.74 mg升高到6.50 mg;S-EPS和TB-EPS中蛋白质和多糖含量变化趋势与总有机碳类似;三维荧光激发-发射矩阵光谱图显示TB-EPS中蛋白质类物质变化明显.  相似文献   

13.
胞内聚合物在絮凝体与丝状菌污泥中的形成   总被引:1,自引:0,他引:1  
研究了两种反应器 (间歇式反应器和连续流反应器 )在使用两种有机基质 (葡萄糖和乙酸钠 )的条件下 ,污泥膨胀发生及与胞内聚合物形成的关系 .得到结论 :丝状菌降解化学需氧量COD的速率和形成胞内有机聚合物的速率较慢 ,且整个过程几乎速率不变 ;胞内有机聚合物形成量比絮凝体污泥少 ;而絮凝体污泥有极为明显的初期COD快速降解与胞内有机聚合物快速形成阶段  相似文献   

14.
为研究生活污水EGSB反应器内的颗粒污泥特性,考察了运行条件的影响.结果表明,15℃以上时缩短水利停留时间(HRT)可提高COD去除率.HRT从1.6 h缩短至0.6 h,平均COD去除率从77%增加至82%.水力和基质的过负荷都会加速颗粒污泥解体.上升流速为2.8~3.1 m/h、容积负荷率(VLR)低于(12.9±7.6)kg/(m3·d)时,污泥粒径分布相对稳定;上升流速为3.8 m/h、冲击负荷为38 kg/(m3·d)时,则造成明显的污泥解体.高负荷运行有利于增加颗粒内部生物密度,但过度剪切造成的污泥破碎和粒径过小也会加剧洗出,尤其在低温条件下.缩短HRT可提高颗粒污泥活性.20℃以上,HRT从1.6 h缩短至0.75 h后,污泥比产甲烷活性(SMA)由0.85 g/(g·d)(VSS)增加至1.11g/(g·d)(VSS).长期低温驯化后,甲烷菌得以富集,10℃、HRT为2 h时,SMA增加至1.21 g/(g·d)(VSS).扫描电镜观察发现,颗粒污泥不同部位呈现明显的菌群分区现象.  相似文献   

15.
接种污泥对好氧污泥颗粒化影响的实验研究   总被引:1,自引:0,他引:1  
为了加快污泥颗粒化进程,在气升式内循环序批反应器中,取普通絮状活性污泥和在絮状污泥中添加一定比例的好氧颗粒污泥分别为接种污泥,进行好氧颗粒污泥的培养,探讨其对污泥颗粒化速度及生物降解性能的影响。结果表明,接种污泥中适量添加颗粒污泥能使颗粒成熟时间由35 d缩短为28 d,缩短了反应器启动时间,培养的成熟颗粒污泥具有较好的沉降性能和降解性能,SVI稳定在36 mL/g左右,沉降速度达36.23 m/h,COD、氨氮和总磷的去除率分别达到97.86%、90.23%、89.60%。  相似文献   

16.
研究A/O全部回流与部分回流工艺各反应阶段污泥胞外聚合物的组成情况以及与污泥性能的关系,采用蒽酮-硫酸法、考马斯亮蓝法分别测定了污泥胞外聚合物中多糖和蛋白质的浓度,结果表明,污泥的絮凝沉降性与多糖蛋白质总量没有明显规律,而是受多糖与蛋白质比值的影响,多糖所占比例越大,污泥絮凝性就越差;多糖与蛋白质比值在中性环境比碱性环境和酸性环境大,多糖/蛋白质值约32.7,酸性环境下,多糖与蛋白质比值最小,多糖/蛋白质值约4.72.  相似文献   

17.
絮凝剂和溶菌酶联用促进污泥脱水性能   总被引:1,自引:0,他引:1  
通过小试试验考察了絮凝剂(聚丙烯酰胺)和溶菌酶联合使用对污水厂二沉池回流污泥的脱水性能、沉降性能及絮体特性的影响,并与2种药剂单独作用时进行了对比研究.结果表明,絮凝剂和溶菌酶分别单独作用于污泥脱水时,均可改善污泥的脱水性能;但2种药剂共同作用时,能同时提高污泥沉降性能和脱水速度,且脱水程度较2种药剂单独处理时进一步提升.2种药剂联用时的最佳投加量为20 mL/L絮凝剂+0.05 g/g溶菌酶,且最优添加顺序为先絮凝剂再溶菌酶.此时污泥抽滤泥饼含水率和比阻分别为65.7%和0.8×1012 m/kg,与原泥相比下降25.3%和75.8%.通过污泥胞外聚合物(EPS)含量与污泥絮体形态分析可知,溶菌酶可以有效破坏污泥絮体结构,改变污泥EPS的分布;高分子絮凝剂的吸附架桥作用则加快了污泥过滤脱水速度.而两者联合使用增大了污泥絮体二维分形维数,可使污泥絮体结构更加细密紧实,并提高污泥可脱除水分的比例,从而提高了污泥脱水性能.研究结果表明,絮凝剂和溶菌酶联用调理污泥脱水具有较好的应用前景.  相似文献   

18.
工业化UASB反应器污泥无载体颗粒化特性研究   总被引:1,自引:0,他引:1  
以阿维菌素废水为处理对象,在工业化中温上流式厌氧污泥床(UASB)反应器中研究了污泥无载体颗粒化过程中的污泥特性。研究表明,接种絮状污泥,经过189d运行成功实现污泥无载体颗粒化。在污泥颗粒化过程中污泥特性发生了显著变化:挥发性悬浮固体(VSS)与悬浮固体(SS)的质量比由接种时的0.45提高到0.8;最大比产甲烷速率由57.3提高到299mL/(gVSS·d);胞外聚合物(ECP)与污泥质量比由31.4提高到58.3mg/g,同时发现ECP含量的增加对于促进污泥无载体颗粒化起到了关键作用。成熟颗粒污泥以灰黑色为主,粒径为1.0~2.0mm,密度为1.082g/cm^3,平均沉降速度为65.3m/h。颗粒污泥表面以丝状菌和杆菌为主,内部多为球菌和短杆菌。  相似文献   

19.
缺/好氧条件下亚硝酸盐的存在对污泥沉降性能的影响   总被引:2,自引:0,他引:2  
在3个配备自控系统的序批式反应器(SBR)中,以乙酸钠为碳源,分别在缺氧和好氧阶段向SBR-1和SBR-2投加亚硝酸盐,以SBR-3作对照,研究缺氧及好氧条件下亚硝酸盐的存在对污泥沉降性能的影响。研究结果表明:在缺氧及好氧条件下,亚硝酸盐的存在均能引发丝状菌污泥膨胀,其中在在缺氧条件下存在亚硝酸盐时易发生更严重的污泥膨胀;亚硝酸盐能刺激菌胶团菌所分泌的胞外聚合物中多糖比例增加,引起菌胶团菌贮存能力降低,使丝状菌在底物竞争中占优势,且使系统除磷效果严重恶化,导致污泥沉降性能变差;SBR-1和SBR-2发生污泥膨胀时,优势丝状菌均为Thiotrix nivea。  相似文献   

20.
低溶解氧污泥微膨胀污染物去除性能的研究   总被引:2,自引:0,他引:2  
为研究低溶解氧微膨胀状态下污染物的去除效果,采用SBR反应器,平均DO质量浓度为047 mg/L,通过好氧/缺氧(A/O)的运行方式,对污染物处理效果进行研究.结果表明,低溶解氧丝状菌污泥微膨胀状态下,出水SS含量很低,COD去除率在80 %以上,氨氮去除率90 %以上,除磷效率在90%之上,出水水质良好,同时可以节约曝气量约467 %.低溶解氧微膨胀状态下,可保证出水处理效果,同时可以节约动力费用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号