首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
将304不锈钢网在含2 mol·L-1 Ni2+的沸腾溶液中处理120 s,制得了催化析氧性能优异、能规模化生产的自支撑电催化剂(SS/Ni-OH2M-120s).该催化剂在10 mA·cm-2电流密度下的过电位为214 mV,比未经处理的304不锈钢网降低约127 mV,在20 mA·cm-2的电流密度下恒电位极化10 h后,催化性能没有出现明显变化,说明具有良好的稳定性.将其与Pt网电极组成全分解水装置,在1.61 V总分解电压下,便可以提供10 mA·cm-2的电流密度,比Pt-Mesh//IrO2/SS全分解水装置电压降低了0.23 V.  相似文献   

2.
在贱金属铁基上表面化学镀Ni-Co-P,然后通过化学复合镀制得Ni-Co-P-Al2O3中间层,复合镀层用5mol·L-1NaOH溶液浸出,可制得新型Ni-Co-P微孔活性中间层,在中间层上再涂覆匹配性较好的NiCo2O4表面活性层,该活性层是由一定Ni(NO3)2和Co(NO3)2的量配比通过高温热解而成.为考察该电极在碱性溶液的析氧反应机理,通过恒电位阶跃实验I~t曲线求出了不同时间下的电量Q,由Q对t1/2作图得Q-t1/2曲线.结果证明,Q-t1/2曲线为不通过坐标原点的直线,说明该析氧电极反应为典型的不可逆反应.通过对析氧电极反应假想模型进行动力学推算及实验,初步确定了电极反应的速度控制步骤.  相似文献   

3.
目的 以泡沫镍、包镍多壁碳纳米管、过氧化氢和七水硫酸亚铁为原料,通过120℃的水热过程,反应6 h成功制备出了FeOOH@CNT/NF析氧催化剂。方法 运用单变量控制法研究了包镍多壁碳纳米管、过氧化氢和七水硫酸亚铁的用量对所制备材料的电催化析氧性能的影响,同时对产物进行了XRD、SEM、I/E、稳定性等表征。结果 研究结果表明,当使用0.300 0 g包镍多壁碳纳米管、0.700 0 g七水硫酸亚铁和30%过氧化氢体积为40.0 mL时,在120℃温度条件下,以预处理的泡沫镍为基底,水热反应6 h可成功制备出FeOOH@CNT/NF电催化析氧材料。结论 所制备析氧催化剂在电流密度为50 mA/cm2时的过电位仅为254.7 mV,Tafel斜率为8.40 mV/dec,Cdl值为690 mF/cm2,并且在12 h内工作稳定。  相似文献   

4.
本工作通过溶剂热法制备了 CoFe-B-P 纳米颗粒,并考察其电化学析氧性能 . 所 制备催化剂的形貌结构和组分通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍 射仪(XRD)、X射线光电子能谱(XPS)和电感耦合等离子体发射光谱(ICP-OES)等手段进行表 征 . 研究发现,当 Co/Fe 的摩尔比为 4∶1 和 NaH2PO2·H2O 的加入量为 2.0 mmol 时,所制备 Co4Fe1-B-P 催化剂展现了最优异的催化 OER 性能,在电流密度为 10 mA cm?2 时的过电位为 285 mV,较小的塔菲尔斜率(52.70 mV/dec),并且在1.0 M KOH电解液中连续测试20 h后仍具 有优异的稳定性 . 所制备催化剂 OER 活性的提高主要归因于过渡金属与非金属之间的协同 作用.  相似文献   

5.
纳米材料具有特殊的物理化学性能,发展迅速。具有催化功能的纳米二氧化锰材料更是在电催化领域应用广泛。文中采用通过溶胶-乳状液-凝胶法制备了纳米MnO2,探讨了不同的表面活性剂、凝胶剂(三乙胺)的用量对纳米MnO2形貌、粒径和分散性能的影响。随后,研究了不同催化剂含量对空气电极阴极性能的影响进行了研究,探讨了催化层的最佳工艺条件。研究表明:采用溶胶-乳状液-凝胶体系,在油∶溶胶为4∶1,乳状液∶三乙胺体积比为8∶3的条件下制备的纳米二氧化锰,其粒度基本在200 nm以下;采用该二氧化锰制备的空气电极,电极催化层的最佳工艺条件为:催化层中催化剂、活性炭、60%PTFE乳液、助剂的比例为3.0∶2.0∶6.82∶0.05.配合使用80目导电镍网骨架用,合适的防水透气层,在7 mol/L的KOH电解液中,氧还原电流密度最大,可达197.4 mA/cm2,可以形成最大的生氧量68.3 mL/min,性能稳定的溶氧制氧电极。  相似文献   

6.
研究了涂布法制备的FcCOOH/Nafion在LiClO4和甘氨酸底液中,0.0~0.8V(vs. SCE)电位范围内均可呈现FcCOOH的氧化还原峰。FcCOOH/Nafion聚合物薄膜修饰电极对水溶液中的多巴胺(DA)在pH 2.0~4.0范围内均有良好的电催化作用。利用旋转圆盘电极进行了催化过程动力学分析,求出了催化反应动力学参数。修饰电极的稳定性和催化稳定性都较好,在DA的浓度为2.0×10-5~1.5×10-3mol/L 的范围内,催化峰电流与DA的浓度呈良好的线性关系,有应用于分析DA的意义。  相似文献   

7.
8.
调控催化剂形貌和结构,优化表面特性,是提高催化性能的重要策略.通过水热合成铜钴双氢氧化物(CuCo LDH)前驱体,再经高温热解制得交叉连接片状CuCo2O4催化剂.该催化剂的粗糙表面和片层间隙有利于电解质的充分扩散吸附;其表面O缺陷能调节相邻金属位点价态,并能提高导电性,适合用于电化学催化.优化元素组成所制备CuCo2O4-1具有良好碱性析氧反应(OER)催化活性,在1 mol·L-1 KOH电解质中,电流密度为100 mA·cm-2时的过电位(η)为362 mV,OER塔菲尔斜率为112.2 mV·dec-1,经过50 h的计时电位测试,η保持稳定,也显示出良好催化稳定性。为碱性OER电催化剂的设计提供了可行方案.  相似文献   

9.
过渡族金属基二维纳米材料作为电催化析氧反应(oxygen evolution reaction, OER)催化剂具有巨大的潜力。通过原位电沉积法,在泡沫镍基底表面制备了二维层状镍铁双氢氧化物(NiFe-LDH)和氧硫化钼Mo(OS)x纳米片异质结构。NiFe LDH/Mo(OS)x电极在1 M KOH溶液中表现出优异的OER性能和长效稳定性,在10 mA/cm2电流密度下过电势仅为220 mV。在100、500 mA/cm2的高电流密度下,也能达到253、304 mV的低过电势。研究结果表明,NiFe-LDH/Mo(OS)x电极优异的OER性能归因于Mo(OS)x和NiFe LDH的协同作用,极大地促进了Fe2+向Fe3+活性物质的转化,并促进了氧空位的形成。这种协同制备方法为合理构建和设计异质结构电催化剂,实现高效的水分解提供了帮助。  相似文献   

10.
采用一步水热法成功制备了MoS2/Ni3S2@NF异质结催化剂.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)对所制备电极的物相和微观形貌进行表征,表面粗糙的核壳MoS2/Ni3S2异质结均匀紧密地分布在镍网(NF)表面.在1 mol·L-1的KOH电解液中,运用线性扫描伏安测试(LSV)、电化学交流阻抗(EIS)、计时电位和计时电流等方法对电极的电催化析氧(OER)性能进行了测试.结果表明,驱动10 mA·cm-2电流密度,仅需134 mV过电势;其Tafel斜率为55.2 mV·dec-1;经过15 h计时电位测试,电流密度保持率高达93.5%.在300、400、500 mA·cm-2电流密度连续测试45 h的结果耐久性表明,MoS2/Ni3S2@NF具有较好的大电流密度工作耐久性.  相似文献   

11.
在不同比较L-半胺胺酸/二硫混合溶液中制备了混合自组装膜修饰电极。经过L-半胱胺酸的还原脱附后,利用循环伏安技术研究了吡咯在L-半胱胺酸/二硫醇自组装膜修饰电极表面聚合的过程和影响聚合的几个因素。实验结果表明,下面的几个因素影响着吡咯在自组装膜上的聚合:L-半胱胺酸在混合膜中的比例、支持电解质pH的大小以及聚合单体分子的大小。  相似文献   

12.
稳定的非贵金属双功能电催化剂是可再生能源驱动的波动全水电解面临的难题之一。本文在三维碳纤维布上电沉积制备了多孔Ni–Fe金属阵列,并在此基础上进行原位氧化和化学硫化,构建了一种新型的自支撑分级多孔NixFe–S/NiFe2O4异质结构双功能电催化剂。研究结果表明,NixFe–S/NiFe2O4异质结构催化剂对析氢反应(HER)和析氧反应(OER)都表现出良好的催化活性和稳定性,优异的催化性质与其大比表面积提供丰富的活性位点、异质结构的协同效应、超亲水表面和稳定的自支撑结构密不可分。分析结果证析氧过程异质结构中的NixFe–S转化为金属氧化物/氢氧化物和Ni3S2。与商用20wt% Pt/C||IrO2-Ta2O5相比,自支撑Ni1/5Fe–S/NiFe2O4||Ni1/2Fe–S/NiFe2O4在10-500mA/cm2的波动电流密度范围内表现出更好的稳定性和更低的槽电压。在500 mA/cm2的工业电流密度下,Ni1/5Fe–S/NiFe2O4||Ni1/2Fe–S/NiFe2O4的槽电压仅为约3.91 V,比Pt/C||IrO2–Ta2O5 (约4.79 V)降低了约20%。  相似文献   

13.
为研究不同制备方法对NiO/NF(nickle foam,泡沫镍)电极组织结构和电催化析氢性能的影响规律,分别采用水热法、热分解法和微乳液法,成功制备出不同形貌特征的NiO/NF电催化析氢电极,对其组织结构进行XRD和SEM表征,并采用电化学方法研究其电催化性能。实验结果表明:3种方法所制备产物的相组成物均为泡沫镍基底Ni和NiO;不同制备方法所获得产物的微观几何结构有较大差别,水热法所制备的NiO为纳米棒状,微乳液法制备的NiO呈现褶皱薄膜状,热分解法制备的则为不规则薄膜。相应地,3种方法制备试样的电化学性能也不同。其中,性能最佳试样由微乳液法制备,其显微形貌呈现均匀的褶皱薄膜状,提供了更多的活性位点。表明不同方法可获得不同组织结构的NiO/NF电极,几何结构优良的电极具有更大的比表面积,可提供较多的活性位点,故具备更佳的电催化析氢性能。  相似文献   

14.
用光电流作用谱、光电流-电势图等光电化学方法研究了聚噻吩(PTh)膜和纳米结构TiO2/聚噻吩(ITO/TiO2/PTh)复合膜的光电转换性质。结果表明,PTh膜的禁带宽度为2.02eV,价带位置为-5.86 eV,导带位置为-3.84 eV。在ITO/TiO2/PTh复合膜电极中存在p-n异质结,在一定条件下异质结的存在有利于光生电子-空穴对的分离,PTh修饰ITO/TiO2电极可使光电流产生波长发生明显红移,从而提高了宽禁带半导体的光电转换效率。在实验条件下,单色光的光电转换效率最高可达到13%。  相似文献   

15.
利用微波加热法,快速制备了负载在泡沫镍基底上的Fe-Ni-Mo/NF复合材料试样.试样的扫描电镜测试、X射线光电子能谱图和X射线衍射谱图分析结果表明,制备的试样均匀分布,Fe-Ni-Mo/NF具有较高的无定型化程度.析氧催化性能测试表明,Fe-Ni-Mo/NF作为催化电极仅需258 m V的过电位便可以达到100 m A/cm2的电流密度,并且展现出了优异的催化稳定性.Fe-Ni-Mo 3金属复合可以有效调节复合氧化物的电子结构和本征活性.实验结果显示,高的无定型化程度和泡沫镍基底有利于电化学活性面积的提高和催化活性位点的充分暴露,从而展现出优异的析氧催化活性和稳定性.实验证实,超快速制备方法可以有效避免有害有机溶剂的使用并显著降低反应时间,且成本较低,此为快速制备其他高效的催化电极提供了重要的参考.  相似文献   

16.
采用电化学沉积方法,选择聚乙二醇(PEG-400)和乙二胺(EDA)为添加剂,直接在ITO导电玻璃上制备了有序阵列的ZnO纳米棒,以及ZnO纳米棒上生长纳米棒微纳分级结构。采用化学浴沉积法均匀沉积Sb2S3纳米粒子,制备了Sb2S3/ZnO纳米棒壳核结构和Sb2S3/ZnO纳米棒上生长纳米棒分级壳核结构。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见吸收光谱(UV-vis)、瞬态光电流等分析手段对其形貌、结构和光电化学性能进行了表征和测试。研究表明,Sb2S3/ZnO纳米棒上生长纳米棒分级壳核结构阵列膜的光电流明显高于Sb2S3/ZnO纳米棒壳核结构阵列。  相似文献   

17.
在不同比例 L-半胱胺酸 /二硫醇混合溶液中制备了混合自组装膜修饰电极。经过 L-半胱胺酸的还原脱附后 ,利用循环伏安技术研究了吡咯在 L -半胱胺酸 /二硫醇自组装膜修饰电极表面聚合的过程和影响聚合的几个因素。实验结果表明 ,下面的几个因素影响着吡咯在自组装膜上的聚合 :L-半胱胺酸在混合膜中的比例、支持电解质 p H的大小以及聚合单体分子的大小。  相似文献   

18.
利用水热法制备了几种过渡金属离子(Zn2+、Co2+、Cu2+)掺杂的TiO2复合纳米粒子(表示为M3d-TiO2),测定了M3d-TiO2纳米结构多孔膜电极和用CdS敏化各掺杂电极的光电流作用谱和光电流-电势曲线.实验结果表明,在所研究的M3d-TiO2电极中,只有Zn2+-TiO2电极的光电流大于未掺杂的TiO2纳米结构多孔膜电极.用CdS敏化各掺杂电极,避免了电子损失,大大提高了光电转换效率,讨论了敏化电极的光电转换机理.  相似文献   

19.
利用水热法合成了纳米棒状的MnO_2/碳纳米球(CNPs)作为电化学超级电容器的电极材料.利用场发射扫描电镜(FESEM)、X射线衍射光谱分析(XRD)对样品的微观形貌、物相进行分析;利用循环伏安法和恒电流充放电测试材料的电化学性能.结果表明:纳米棒状MnO_2/CNPs复合材料具有良好的电化学性能.在0.1 A/g的电流密度,1 mol/L Na_2SO_4电解液中,电极材料的比电容高达305.6 F/g,远高于纯碳球的比电容(49.3 F/g),当电流密度增至5 A/g时,材料的比电容为235 F/g,比电容仍能保持76.9%.  相似文献   

20.
以负载FeSalen(Salen=N,N-双水杨醛缩乙二胺)配合物的APO-5磷铝分子筛复合材料(FeSalen/APO-5)做电极的修饰主剂,聚苯乙烯(PS)为粘结剂,采用物理吸附法在玻碳电极(GCE)表面形成涂层,制备获得FeSalen修饰的玻碳电极(PS/FeSalen/APO-5/GCE)。采用循环伏安法(CV)研究了此修饰电极在不同pH电解液中的电化学性质及其对氧还原反应的电催化作用。结果表明,氧气的电催化还原峰电流随扫描速率的增大而增强,峰电位随扫描速率的增大而负移,ipc~v1/2和Epc~lnv均呈线性关系,并发现此修饰电极能有效地催化分子氧的四电子还原反应,推断其机理属于ECE催化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号