首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
针对在非线性时间序列的BP神经网络建模预测的基本方法中,存在的建模速度慢,计算较复杂等问题,提出一种改进的BP神经网络动态建模与预测方法,并运用该方法对一非线性时间序列进行了仿真,仿真结果表明此方法的实际应用效果较好。  相似文献   

2.
基于RBF神经网络的时间序列预测   总被引:3,自引:0,他引:3  
分析了RBF神经网络的结构和学习算法,利用RBF神经网络和Matlab神经网络工具箱建立人口数量预测模型,并应用该模型对中国人口数量进行了预测.  相似文献   

3.
针对循环神经网络(recurrent neural networks,RNN)网络结构存在的长期依赖问题,门控循环单元(gated recurrent unit,GRU)神经网络作为RNN的一种变体被提出。在继承RNN对时间序列优秀记忆能力的前提下,GRU克服了时间序列的长期依赖问题。本文针对金融时间序列数据存在的依赖问题,将GRU扩展应用到金融时间序列预测,提出了基于差分运算与GRU神经网络相结合的金融时间序列预测模型。该模型能够处理金融时间序列数据的复杂特征,如非线性、非平稳性和序列相关性。通过对标准普尔(SP)500股票指数的调整后收盘价进行预测,实验结果表明,所提出的方案能够提高GRU神经网络的泛化能力和预测精度,并且与传统预测模型相比该模型对金融时间序列的预测拥有更好的预测效果和相对较低的计算开销。  相似文献   

4.
Elman神经网络是一种典型的回归神经网络,比BP神经网络具有更强的计算和适应时变特性的能力,因而非常适用于预测股市这一类极其复杂的非线性动力学系统。文章给出一种基于Elman神经网络的股票市场建模、预测及决策方法,对浦发银行股价在时间序列上作了连续若干天的短期预测,实验结果取得较高的预测精度、较为稳定的预测效果和较快的收敛速度。这表明该预测模型对于个股价格的短期预测是可行和有效的。  相似文献   

5.
RBF网络是一种新颖有效的前向型神经网络,它通过非线性基函数的线性组合实现从输入空间RN到输出空间RM的非线性转换,特别适合于非线性时间序列如股票市场等金融系统的预测.本文以中集集团的实际收盘价作为预测对象,提出基于RBF网络的个股价格预测模型,仿真实验表明,该模型对于个股价格的短期预测是可行有效的.  相似文献   

6.
对复杂混沌时间序列快速预测的前馈神经网络   总被引:1,自引:0,他引:1  
提出了一种基于前馈神经网络结构的适合于非线性预测的在线学习方法,这种方法吸收了最小二乘法和传统在线BP算法的优点,具有收敛速度快,跟踪性能好、适用于非线性预测等特点。  相似文献   

7.
BP网是神经网络时间序列预测方法中最常用的网络。针对BP算法局部搜索能力强,而遗传算法全局搜索优势突出的特点,将二者结合构造遗传BP神经网络,用于非平稳时间序列预测。仿真结果表明,该混合算法不仅提高了学习效率,而且对太阳黑子数预测的准确性高于BP算法、传统统计学预测方法。  相似文献   

8.
本文对香港恒生指数期货(HSI)的时间序列进行了分析和预测。我们发现该时间序列具有分数组和正的Lyapunov指数,这表明该序列是由内在的混沌确定力产生的。在对该序列进行动力学重构和可测性分析的基础上,我们用混沌算法的前馈神经网络对它进行了在线预测。计算机模拟表明混沌算法神经网络的预测噗蒿于背传算法神经网络的预测精度。  相似文献   

9.
应用Elman神经网络的混沌时间序列预测   总被引:5,自引:0,他引:5  
利用改进的 Elman神经网络对 3个典型的混沌时间序列在不同的噪声水平下进行预测 ,探讨了神经网络学习与泛化之间的关系 ,通过试凑法给出了 Elman最优的隐节点个数。并利用3种指标对预测结果进行了评估 ,结果显示 Elman网络对混沌时间序列预测的良好特性  相似文献   

10.
传统的警情时间序列预测以实际的发案数量为目标,且仅能实现短期的预测,但由于警情时间序列本身固有的强随机性使预测很难达到理想的效果。根据警情时间序列数据的特点,从公安工作的实际需求出发,提出了一种基于时间序列分解与全连接神经网络的(STL-FNN)预测模型,该模型以预测警情的单日发案的风险等级为主要目标,能够实现警情风险等级的长周期预测。利用该模型对B市侵财类警情数据进行了时间序列长周期预测的实证分析,结果表明:STL-FNN模型能够实现一年的警情单日发案风险的预测,平均准确率为0.624 7,预测性能优于Holt-Winters、LSTM、Prophet和ARIMA等模型。  相似文献   

11.
针对神经网络集成对个体差异性的要求 ,提出了集成网络间的结构差异度的概念 .在此基础上设计了一种基于反向选择的免疫算法 ,该算法可以在减小集成网络各自训练误差的同时保持网络间的结构差异度 ,从而提高神经网络集成的泛化能力 .同时证明了该算法对最优个体的收敛性 .将该方法应用于受噪声污染的非线性时间序列故障预报 ,根据预测误差可以方便准确地检测系统的缓变故障和突变故障 ,实现对微小故障的快速故障预报 ,降低误检率 .仿真结果证明了该方法的有效性 .  相似文献   

12.
ANN非线性时间序列预测模型输入延时τ的确定   总被引:1,自引:0,他引:1  
用神经网络(ANN)建立非线性时间序列预测模型时,ANN输入数据延时间隔τ的选取是必须考虑的一个方面。目前关于延时间隔τ选取的流行做法是:将τ确定为相空间重构时的最佳延时τs,本文提出了与此不同的观点,即神经网络输入数据延时间隔τ的选取与τs无直接关系。综合考虑其他一些因素,认为ANN输入数据延时间隔τ取为1是最为合理的。给出了理论分析和实验验证。  相似文献   

13.
探讨载体位置与姿态均不受控的漂浮基空间机器人在存在时间延迟环境下的关节空间轨迹跟踪的控制问题.在传统漂浮基空间机器人系统动力学模型基础上,融合泰勒级数展开法,建立适用于时延情况下的改进的动力学数学模型.并设计一种基于模糊递归的神经网络跟踪控制方案,利用其对任意不确定非线性项的整体逼近,来消除模型中存在的时延误差.运用Lyapunov第二类方法证明所设计控制系统的渐近稳定性.所提及的控制方案能够有效克服时延对系统稳定性的消极影响,并在提升系统控制品质的基础上得到理论延迟值的适用范围.计算机数值仿真结果验证了上述控制方案的有效性与精确性.  相似文献   

14.
基于递归神经网络的多步预报方法   总被引:4,自引:0,他引:4  
为了解决由多层前馈神经网络递推运算获得的多步预报存在的预报误差迭代累积问题 ,提出了基于局部递归神经网络的多步递归神经网络 (MSRN)模型 ,对时间序列进行了多步预报 .用模拟振动数据把MSRN模型用作单步和多步的预报能力 ,同经典的多层前馈神经网络进行了比较 ,并预报了天津石化总公司炼油厂大机组某测点振动的变化趋势 实践表明 ,用该方法进行多步预报误差小 ,并具有良好的预报能力 .  相似文献   

15.
神经网络在时间序列预测中的应用   总被引:5,自引:0,他引:5  
将人工神经网络的BP模型应用于非线性时间序列预测,并将预测结果与传统预测方法的预测结果进行比较,表明神经网络预测方法具有明显的优势。  相似文献   

16.
提出了一种新的混沌时间序列预测方法——多维泰勒网方法.该方法不以相空间重构方法中嵌入维数和时间延迟这两个关键参数的选取为前提,无需系统的先验知识和机理,仅根据已知的时间序列样本,通过多维泰勒网模型获得n元一阶多项式差分方程组,进而得到能反映非线性系统动力学特性的多维泰勒网动态模型.在此基础上提出了基于多维泰勒网的自适应多步预测方法,通过数据窗口的滑动自适应建模,实现对混沌时间序列的多步预测.将该方法应用于Lorenz混沌时间序列的一步和多步预测,均方误差分别达到2.56×10-5和2.76×10-3.仿真结果表明,该方法可以对混沌时间进行有效预测,且具有较高的预测精度.  相似文献   

17.
针对复杂时间序列全局预测模型建模效率低、预测性能不佳等问题,提出一种基于局部RBF神经网络的新型预测模型.该模型采用K最近邻搜索方法得到待预测样本的K个近邻,用近邻样本进行RBF神经网络建模,用训练好的RBF神经网络对待预测样本进行预测.实验结果显示该模型在复杂时间序列预测上有良好的性能.  相似文献   

18.
基于时序分析与神经网络的能源产量预测模型   总被引:6,自引:0,他引:6  
实际生产系统中存在大量时间序列问题,为了研究系统的结构和规律,我们需要建立时间序列模型,对其进行预测和分析。目前时间分析方法多采用AR或ARMA模型,但由于实际问题错综复杂,导致模型求解困难,实际中难以应用。为了解决上述问题,首先分析了生产系统时序分析的基本原理,利用BP神经网络建立了时序—神经网络模型,然后利用该模型对能源产量进行了预测。通过预测结果的分析可看出,该模型具有利用方便、动态性能好、预测准确性高等优点,在实际中具有一定的实用价值。  相似文献   

19.
陀螺随机漂移的神经网络预报方法研究   总被引:3,自引:0,他引:3  
针对惯性导航系统中陀螺仪的漂移特性,在时间序列分析及神经网络理论的基础上提出了一种时间序列神经网络结构,并采用此种网络模型对某捷联惯导系统中所用的陀螺仪漂移数据进行了预报。预测结果表明,这种预测方法对于陀螺漂移建模及预报是可行的。  相似文献   

20.
用人工神经网络预测噪声环境的混沌时间序列是一个重要的问题,因为许多实际的时间序列数据都是含噪声的.提出一种利用积单元神经网络(PUNN)预测噪声环境的混沌时间序列的方法,它采用了粒子群优化器(PSO)训练PUNN网络.用所提方法对Lorenz混沌序列做了仿真实验,结果表明所提方法结构简单、泛化能力强,是一种有效的方法;当PUNN网络的输入节点数目为2或3时,预测精度更高,而且泛化能力也更强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号