首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
局部放电(PD)模式识别是诊断高压电气设备内绝缘缺陷的重要方法之一.采用了一种Δu模式参量作为局部放电的图谱特征,并采用不变矩作为放电特征;同时,采用了径向基函数神经网络(RBFNN)对局部放电Δu模式参量构成的图谱特征进行识别.结果表明采用正交最小二乘法(OLS)训练的RBFNN对Δu模式中的不变矩特征参量进行识别,RBFNN收敛速度快且稳定性强,识别率达到85.7%以上,能够很好地识别由5种人工绝缘缺陷模型产生的局部放电信号,在实际应用中具有良好的应用前景.  相似文献   

2.
介绍了BP人工神经网络在局部放电模式识别中的应用,结合实际现场情况提出了一种基于统计分析的局部放电特性提取方法,在此方法的荐对空气火花放同中火花放电进行了式识别实验,实验结果证明了这种放电特性提取方法在局部放电模式识别应用中的可行性。  相似文献   

3.
对电力设备局部放电的检测与定位是保障电力系统安全稳定运行的重要手段之一。现有局部放电定位法主要是基于特高频传感器技术和时差法进行的,高的采样率和同步精度,使得其硬件成本巨大、实现困难,且容易受现场环境影响。提出了基于特高频无线传感器和模式识别算法的局部放电定位法,该方法硬件要求低,易于实现,且具有良好的环境适应性。首先通过现场测量,建立待检测区域局部放电信号强度与放电坐标的特征信息库。当有局部放电发生时,将此时传感器测量到的特征信息输入已建好的信息库中进行模式识别,从而得到定位结果。现场试验结果表明,提出的新型局部放电定位算法的平均定位误差为0.58 m,80.8%的定位误差小于1 m,从而验证了算法的有效性,具有较好的推广应用价值。  相似文献   

4.
人工神经网络在汽轮发电机局部放电模式识别中的应用   总被引:1,自引:0,他引:1  
阐述了局部放电测量对大型汽轮发电机定子绝缘状况诊断的重要性。针对大型汽轮发电机定子绝缘中3种主要放电形式,进行了大量模拟试验,获得了3种放电的相位Φ、放电量q及放电次数n的三维特征谱图。采用多层前馈神经网络来分析局部放电三维特征谱图的统计数据,以实现电机中局部放电的模式识别,取得了很好的效果。  相似文献   

5.
介绍了BP人工神经网络在局部放电模式识别中的应用.结合实际现场情况提出了一种基于统计分析的局部放电特性提取方法,在此方法的基础上对空气火花放电和油中火花放电进行了模式识别实验,实验结果证明了这种放电特性提取方法在局部放电模式识别应用中的可行性.  相似文献   

6.
基于遗传算法的神经网络在局部放电模式识别中的应用   总被引:7,自引:0,他引:7  
针对BP神经网络(NN) 在大型发电机局部放电模式识别中存在的收敛速度慢、容易陷入局部极小点的问题,提出采用遗传算法(GA) 作为神经网络的学习算法.并且根据神经网络结构的特点,构造了新的遗传算子.结果表明,与BP神经网络相比,GA 神经网络的收敛性能和推广能力都有了明显提高  相似文献   

7.
对径向基函数(RBF)神经网络在数据分类中的应用进行了研究.提出一种应用于模式识别的动态RBF训练算法,该算法使用区域映射误差函数并结合资源分配网络(RAN)的“新性”(novelty)条件动态调整网络的隐层节点数,从而可以更加有效地进行模式识别.二分类样本和建筑材料CaO-Al2O3-SiO2系统仿真表明,该改进算法使误差下降更快,减少了训练次数,可以获得精简的网络结构,从而使网络具有较高的泛化能力.  相似文献   

8.
多分类问题的RBF 二叉神经树网络方法   总被引:1,自引:0,他引:1       下载免费PDF全文
神经网络是一种普遍使用的分类方法。当类别数目较大时 ,神经网络结构复杂、训练时间激增、分类性能下降。基于两类问题的树网络多分类方法将两分类方法和判决树相结合 ,利用两分类方法来减少神经网络的训练时间 ,利用树型分类器来提高识别率。提出了一种多分类问题的二叉神经树网络结构和训练算法。利用两分类网络的训练结果对类别进行排序处理 ,并应用排序后的类别序号构成树型分类器 ,使可分性最差的类别的识别率提高最大 ,从而提高了整体分类性能。使用径向基函数 ( RBF)网络作为节点网络 ,使节点网络结构适应两类间的可分性 ,从而最终优化了神经树网络的结构。仿真实验表明该方法的分类性能优于现有方法  相似文献   

9.
为了对模拟气体绝缘组合电器(gas insulated switchgear,GIS)的4种绝缘缺陷产生超高频(ultra high frequency,UHF)局部放电(partial discharge,PD)数据和波形进行识别,用复小波变换对UHF PD信号进行分解,利用均值、方差、偏斜度、陡峭度、能量共5个统计参量对复小波变换的各尺度系数进行量化,构造出能够描述UHF PD信号特征的候选特征子集,引入衡量特征分类能力的分离度指标J作为特征量降维的评判指标,从60个特征量中选取了5个具有较高分类能力的最佳特征量,作为径向基神经网络识别放电类型的输入有效向量,识别结果表明:db系列复小波系数的实部和虚部信息共同描述了PD信号的特征,从中提取的最佳特征量具有较高的分类能力,其中db4复小波的分类效果最好。  相似文献   

10.
为了准确、可靠地有效识别电力变压器中绝缘劣化的严重程度和局部放电的位置,本文提出一种基于多尺度熵特征提取方法,采用支持向量机对放电类型进行模式识别。首先,利用多尺度熵对放电信号从定性和定量两个角度有效提取特征放电信号特征量;其次,将获得的特征信号输入支持向量机对放电类型进行模式识别。实验结果表明,该方法可以有效提取局部放电信号特征量。  相似文献   

11.
基于决策论的信号调制样式自动识别方法具有简单易行、适合在线分析的优点,针对一些参数的计算进行了改进,并提出了基于该方法,利用正交最小二乘法(OLS)的径向基函数(RBF)神经网络,实现数字信号调制样式自动识别的方法.提高了该方法的识别能力,对信噪比(SNR)为6~30 dB的测试信号识别得到了较好的结果.识别的数字信号为2ASK、4ASK、2PSK、4PSK(QPSK)、2FSK、4FSK与16QAM.  相似文献   

12.
针对径向基函数(RBF)神经网络和统计模式识别的特点,提出利用递归正交最小二乘法(ROLS)的RBF神经网络实现数字信号调制样式的自动识别。仿真结果表明,利用ROLS算法很好地实现了RBF神经网络权值的确定和中心的选择,从而大大减少了网络的训练样本数和训练时间,提高了网络的识别性能。  相似文献   

13.
郭玉松  李权  雷宇  李建国 《江西科学》2006,24(4):222-225
以RBF神经网络理论为基础,设计实现了焊接材料计算机辅助设计系统。应用该系统能建立影响因子与性能指标之间的人工神经网络模型,并以此为基础建立了性能预测、配方预报、分析等功能模块,对焊接材料研发人员探索影响因子与性能指标之间关系具有较大的实际意义。  相似文献   

14.
一种基于蚁群聚类的径向基神经网络   总被引:2,自引:0,他引:2  
提出了一种基于蚁群聚类算法的径向基神经网络.利用蚁群算法的并行寻优特征和挥发系数方法的自适应更改信息量的能力,并以球面聚类的方式确定了径向基神经网络中基函数的位置,同时通过比较隐层神经元的相似性、合并相似性较为接近的2个神经元来约简隐含层的神经元,以达到简化径向基神经网络结构的目的.实验比较了几种不同聚类算法的径向基神经网络,结果表明,所提神经网络的整体训练时间至少可缩短40%,学习的准确率可提高1%以上,而且网络结构更加精简.  相似文献   

15.
基于特征矢量输入的神经网络测向方法   总被引:5,自引:0,他引:5  
提出了一种新的基于特征矢量的采集输入数据方法,经该方法训练的径向基函数神经网络(RBFNN)可用于码多分址(CDMA)系统中多源信号波达角(DOA)的估计。该方法对信道噪声不敏感,能以较少的训练样本就可得到推广能力较好的神经网络。仿真结果表明,以新方法训练的RBFNN对多源信号DOA估计精度较高,实时性好,适用于CDMA通信系统的高分辨率测向。  相似文献   

16.
局部保留映射(locality preserving projections,LPP)选择人脸子空间特征包含非线性信息而不利于最近邻法分类.基于径向基函数(radial basis function,RBF)分类器可以将非线性可分问题转化为线性可分问题的特点,提出了利用LPP子空间和RBF网络相结合进行人脸识别的方法,LPP算法采用监督模式,RBF网络隐层中心采用正交最小二乘(orthogonal least—squares,OLS)法训练.实验结果表明,该方法在Yale—B和Yale—B Extended人脸数据库上的识别率为95.67%,在CMU—PIE人脸数据库上的识别率为98.52%,具有较好的抗噪能力,识别效果优于特征脸、Fisher脸以及拉普拉斯脸法.  相似文献   

17.
提出一种基于径向基网络的汽车车牌字符识别算法.在预处理阶段,采用灰度化、自适应阈值分割去除图像噪声并增强图像对比度;在字符分割阶段,采用极限元素位置确定法实现独立字符分割;在字符识别阶段,利用自行构建的字符子块图像库对径向基神经网络进行训练.选取基于反向传播(BP)神经网络的字符识别算法和基于支持向量机(SVM)的字符识别算法与文中方法进行比较.实验结果表明:文中方法在识别准确率上具有明显优势,更适用于汽车车牌的字符识别.  相似文献   

18.
光伏系统在局部遮阴情况下,输出曲线呈现多峰特性.针对传统最大功率控制算法易追踪到局部最大功率点的缺陷,提出一种基于自适应径向基函数(Radial Basis Function,RBF)神经网络的控制算法.该算法以自适应线性算法优化RBF神经网络的扩展常数与权重,克服了传统神经网络算法收敛速度慢、全局寻优差的缺点.在MATLAB/Simulink环境下建立自适应RBF神经网络仿真模型进行验证,结果表明,提出的算法在外界光照、温度发生变化时能准确找到光伏系统的最大功率点,且在收敛精度和收敛时间上均有很大的提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号