首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
基于神经网络的一类非线性系统自适应滑模控制   总被引:7,自引:0,他引:7  
对一类非线性系统进行简化处理后,结合神经网络逼近方法、自适应滑模控制提出一种新的自适应控制方法.所设计的控制器分为两部分,一部分是等效控制器,另一部分是滑模控制器.滑模控制器用来减小系统的跟踪误差,起鲁棒控制作用.文中用神经网络逼近非线性函数,并将网络权值误差引入到神经网络权值的自适应律中用以改善系统的动态性能.最后给出的仿真算例证明所设计的控制器是十分有效的.  相似文献   

2.
研究了机械臂的位置跟踪问题,提出了基于神经网络的自适应输出反馈控制方法. 该方法无需系统精确的数学模型,适用于具有非线性不确定性和外界干扰的机械臂控制系统. 设计的控制器由三部分组成:基于动态补偿器的输出反馈控制项、神经网络自适应控制项和鲁棒控制项. 神经网络的权值自适应学习率由Lyapunov稳定性理论得出. 仿真结果表明设计的控制器能驱动机械臂精确跟踪期望的位置,验证了该控制方法的有效性.  相似文献   

3.
针对线性、时不变和具有不确定参数的对象进行辨别和控制研究,其辨别器和控制器的确保辨识系统全局稳定的自适应函数调参规律和结构选优组成等,都是构建在线性系统理论之上。由于非线性系统的辨别和自适应控制一直难于找到相应的数学方法,因此提出一种非线性系统数学模型构成系统模型辨识的新方法,将组合优化问题由非线性系统结构辨识问题转化而成。仿真实验表明,遗传算法求解非线性系统辨识比其他方法具有更好的近似解,证明了该算法的有效性和实用性。  相似文献   

4.
基于RBF神经网络多步预测的自适应PID控制   总被引:10,自引:2,他引:10  
提出一种基于RBF神经网络多步预测的自适应PID控制算法.该算法用无局部极小的径向基函数网络对非线性系统进行在线辨识,利用多步预测误差对PID型控制器网络进行训练,从而实现PID参数的在线自适应寻优.通过对典型非线性系统的仿真研究,该控制系统具有较强的适应性和鲁棒性.  相似文献   

5.
机械臂属于强耦合多变量的典型非线性系统,常规的控制策略难以取得满意的控制效果.采用基于BP神经网络的模糊自适应PID控制策略,解决了原有PID控制的参数自适应能力弱、鲁棒性较差的问题.该方法采用BP神经网络动态调整PID控制器参数,使之能够随时满足控制精度的需要,改善系统的控制性能.仿真实验结果表明:所提的控制策策略实现简单,同时具有较高的控制精度.  相似文献   

6.
一种基于神经网络辨识的预测方法   总被引:2,自引:4,他引:2  
针对时变的非线性系统,将传统的预测控制与神经网络逼近任意非线性函数的能力相结合,提出一种基于神经网络辨识的预测方法.同时选用含有调整参数的双曲正切函数作为节点的激活函数,弥补由于未考虑激活函数的输出值域、影响神经网络辨识精度和速度不足的问题.仿真结果表明,它适用于无滞后和有滞后的时变非线性系统,辨识收敛速度快、精度高,并具有较强的自适应性和鲁棒性.  相似文献   

7.
在周期性负荷扰动情况下,同步发电机可能诱发混沌振荡现象,严重威胁电网运行安全性。为解决此问题,本文提出了基于等效控制的神经网络滑模控制策略。首先系统利用等效控制方法设计滑模控制器,然后结合神经网络理论以及自适应控制原理来逼近滑模控制器中的非线性项,设计出神经网络滑模控制器。在该控制器的作用下,系统的输出渐近跟踪目标轨迹,由混沌运行状态转变为稳定运行状态。理论分析与仿真结果表明,所设计的控制器能够有效抑制电力系统的混沌振荡,且具有一定的鲁棒性。  相似文献   

8.
考虑输入饱和的直接自适应神经网络跟踪控制   总被引:1,自引:0,他引:1  
基于Lyapunov稳定性定理和backstepping方法,针对一类受输入饱和限制的单输入单输出非线性不确定系统,提出了一种考虑输入饱和的直接自适应神经网络控制算法. 采用动态面控制方法和直接自适应神经网络控制方法,避免了传统控制设计中的“计算量膨胀”问题和潜在的控制器奇异值问题. 借助一种饱和内补偿辅助系统处理系统中的输入饱和限制问题,以保证系统的稳定性和控制性能. 该算法不但保证了闭环系统信号一致最终有界,而且使系统输出能收敛到零的一个较小邻域. 以大连海事大学远洋实习船“育龙”轮为例进行仿真,验证了所提控制器的有效性.  相似文献   

9.
提出一种基于RBF神经网络在线辨识的永磁同步电机单神经元PID矢量控制新方法,该方法针对传统的PI调节器固定参数所造成的不足,利用具有自适应能力的单神经元PID调节器和RBF神经网络相结合,实现了参数在线辨识,转速在线控制.仿真结果表明该方法控制精度高,动态特性好,适合于永磁同步电机的速度控制.  相似文献   

10.
研究了新型多旋翼飞行器的建模与轨迹跟踪控制. 建立了非线性运动学和动力学模型,并提出基于全调节径向基神经网络和回馈递推的鲁棒自适应轨迹跟踪控制策略. 首先设计了飞行器的位置误差PID控制器,用于实时消除飞行轨迹与期望轨迹的偏差,并为姿态控制环构建姿态角指令. 采用全调节径向基神经网络估计飞行器动力学模型中的复合干扰,为避免回馈递推控制器设计过程中对虚拟控制信号的繁琐求导运算,减小对解析模型的依赖度,设计了一种基于指令滤波回馈递推的飞行器姿态控制器. 该设计方法通过滤波器而非直接用解析方法对虚拟控制信号求导,大大简化了控制器的设计过程,节省了控制能量. 仿真实验表明所提出的轨迹跟踪策略的正确性和有效性.  相似文献   

11.
含有输入动特性不确定飞控系统的自适应滑模控制   总被引:1,自引:0,他引:1  
针对含有执行器动特性和严重不确定性的非线性飞控系统,提出一种非线性自适应滑模控制器. 该控制方案的主要特征是对系统不确定性没有匹配条件的限制. 控制器由两部分组成:一部分根据称为标称模型的已知非线性模型进行控制器设计,另一部分根据建模误差的估计参数设计自适应滑模控制器. 对某飞机的非线性6自由度未解耦模型进行仿真,验证了该方法对系统不确定性具有较强的鲁棒性,对期望输出有良好的跟踪精度.  相似文献   

12.
针对战斗机在大迎角下表现出的机翼摇滚非线性振荡现象,提出一种基于自适应神经网络的抑制机翼摇滚控制方案. 采用动态逆方法实现机翼摇滚特性的近似线性化,并根据动态性能指标要求设计线性补偿器,采用单隐层神经网络在线补偿近似动态逆引起的误差. 仿真实验验证了控制方法的有效性.  相似文献   

13.
王宏  沈岭  岳红 《应用科学学报》2005,23(6):620-624
研究了一类具有线性输出结构的非线性系统故障诊断和容错控制,利用自适应观测器来构造线性残差,同时构造李亚普诺夫函数,使其一阶导数为负来得到故障估计值,容错控制部分设计了2个自适应观测器,通过控制器重组使故障发生后的系统输出跟踪原系统输出.理论分析和仿真结果证明了该方法的有效性.  相似文献   

14.
船舶航向非线性系统的自适应跟踪控制器设计   总被引:4,自引:0,他引:4  
将非线性船舶操纵数学模型用于船舶航向跟踪的自动舵设计,同时考虑模型参数的不确定性以及舵机伺服系统特性,则船舶操纵非线性数学模型具有非匹配不确定形式.针对上述困难,提出一种新的自适应非线性控制策略,将Nussbaum函数与逆推(backstepping)技术相结合,设计了船舶运动航向跟踪控制器,成功解决了其虚拟控制系数符号未知的问题.在理论上,借助Lyapunov函数证明了所设计控制器使最终的非匹配不确定船舶运动非线性系统中所有信号有界,船舶实际航向自适应地渐近跟踪设定的期望参考航向.仿真结果表明所设计的控制器有效可行,对系统参数变化具有很强的鲁棒性.  相似文献   

15.
单级倒立摆迭代非线性滑模位移控制   总被引:1,自引:0,他引:1  
针对倒立摆的位移控制,提出一种非线性滑模变结构控制方法.通过对系统输出的递归分解迭代设计,构成了扩展状态空间上的复杂非线性滑模,结合增量反馈控制,无需对系统不确定性的估计,可以稳定摆的倒立并将小车驱动到任意的距离.非线性滑模分解迭代方法结构简单、易于实现,设计过程的物理意义明显,利于参数整定保证控制系统稳定性以及分析输出特性.仿真结果表明,小车位移稳定时间、最大移动速度以及位移过程中摆角最大幅度均可通过设计参数调节,且控制器对倒立摆系统参数变化不敏感、具有强鲁棒性和良好的控制品质.  相似文献   

16.
研究了一类带有未知参数的非线性系统的自适应稳定问题,利用控制Lyapunov函数方法设计出一种自适应控制器.该控制器对系统的参数和状态的不确定性具有鲁棒性,并且能保证系统自适应稳定.  相似文献   

17.
针对一类有界扰动不确定非线性系统,讨论了鲁棒自适应ε输出跟踪问题.利用Backstepping方法和鲁棒控制技术,对存在未知参数和动态不确定性的非线性系统设计了一种自适应输出反馈控制器.基于Lyapunov稳定性理论所设计的控制器不仅保证闭环系统状态全局一致有界,而且使系统的跟踪误差收敛到一个很小的邻域内.仿真结果表明了所设计方法的有效性.  相似文献   

18.
针对多输入多输出非线性系统,把自适应模糊控制和自适应模糊辨识结合起来,提出了一种间接自适应模糊控制方案.由跟踪误差和辨识误差给出了参数调节规律,两种误差同时调节参数改善了系统性能.应用推广的模糊逻辑系统来估计多维未知函数,补偿器可抵消模糊逼近误差和外部扰动.控制方案保证了系统的稳定性,实现了跟踪.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号