首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
采用分簇管理的无线传感器网络,能够显著地节省能量.簇头在数据的汇总、融合、转发过程中起到关键作用,但是一旦簇头被俘,存储的密钥信息泄露,这将影响整个簇的安全通信.为有效延长网络寿命和可信簇头选举,本文设计了一种基于模糊决策的簇头选择算法,以剩余能量、信任值、向心度和共享密钥数作为安全性评估的关键指标.实验结果表明,通过模糊决策方法选取簇头能均衡能耗,提高网络生命周期并能阻止恶意节点成为簇头.  相似文献   

3.
文章提出一种基于极速决策森林(UFFT)的加权装袋算法(UFFT_wb),它采用加权装袋算法模型,以UFFT算法构建基分类器.实验表明,该算法具有确定分割点及选择分割属性花费时间少、构建新结点占用空间小及可以增量式构建等特点,与基于C4.5算法的加权装袋算法模型相比,在保持相似精度的基础上,时间性能有一定程度的改进.  相似文献   

4.
针对传统K-means算法在初始质心选取的敏感性以及迭代计算的冗余性这两方面的缺陷,提出一种高效的聚类算法(ECA).根据数据对象的空间分布情况,首先采用空间划分预聚类算法(SDPCA)对数据集实现预聚类划分,然后采用基于邻近簇调整的优化聚类算法(OCANC)对预聚类成果进行优化处理,最终获取聚类成果.实验证明,该改进算法能消除对初始输入的敏感性,以更高的运行效率获取较高质量的聚类结果.  相似文献   

5.
针对传统无线传感网的分层路由算法中存在着分簇不均匀、簇首数量不固定、簇首位置不合理、节点的可扩展性不足以及数据传输方式比较单一的问题,提出一种无线传感网能量高效分簇协议.该协议在簇的建立阶段基于K-means++聚类算法进行分簇并采用S_Dbw聚类评价指标挑选其最优分簇,在簇的建立阶段,从每个簇中选取簇内剩余能量最高的节点作为簇首;在数据传输阶段,基于节点间的通信代价使用Dijkstra算法来寻找每个簇首到汇聚节点的最优路径.仿真结果表明:该协议可降低节点与汇聚节点之间数据传输的能耗,延长传感网的生命周期,并且在整个网络能量处于较低水平时也可以较好的覆盖整个监测区域.  相似文献   

6.
K-means算法需要人工设定聚类个数且易受孤立点影响,根据这个缺陷提出了一种新的改进算法。改进算法通过设定初始值及初始值的最大值,在聚类过程中自动获取聚类数k。实验结果表明,该算法在一定程度上缓解了K-means算法对初始值敏感及受孤立点影响的问题,能产生高质量的聚类结果。  相似文献   

7.
一种基于AdaBoost的SVM分类器   总被引:6,自引:0,他引:6       下载免费PDF全文
针对AdaBoost的分量分类器的分类精度和差异性互为矛盾、以至于该矛盾的存在降低了AdaBoost算法的分类精度和泛化性的问题,提出了一种变σ-AdaBoostRBFSVM算法,通过根据训练样本调整各个分量分类器的核函数参数值,使分量分类器在精度和差异性之间达到一定的平衡,从而提高了集成分类器的分类精度和泛化性。对标准数据集的分类实验结果表明了算法的有效性。  相似文献   

8.
提出了模式类可分度函数的概念,研究了模式类可分度函数中参数获取的方法.给出了分类器品质函数.并据此提出一种基于模式类可分度的分类器评价方法.该方法避免了以传统的错误识别率评价分类器以至在处理线性不可分的特征空间时的不足,具有一定的应用价值.  相似文献   

9.
基于多分类器融合,首先提取行人的运动前景,计算校正透视效应之后的前景面积,提取图像的有效Harris角点和SURF点信息,并由此得到反映行人遮挡程度的遮挡系数,从而构造特征向量,输入BP)神经网络建立回归模型;然后提取行人的HOG特征,采用Adaboost级联分类器训练出相应的行人检测器,检测每帧视频的行人并统计数量;最后基于前两个分类器,用stacking的策略构造了组合分类器,并实现分类器融合时权值的自适应调整.通过与现有算法进行对比,算法的效果优于其他算法,对复杂场景适应性强且满足实时性要求.  相似文献   

10.
K-means算法是聚类方法中常用的一种划分方法.基于扩展划分的思想,提出了一种基于扩展的K-means聚类算法(EK-means),在一定程度上避免了聚类结果陷入局部解的现象,减少了原始K-means算法因采用误差平方和准则函数而出现将大的聚类簇分割开的情况.该算法使用了基于距离的技术来处理孤立点,引进了一种基于扩展的方法进行聚类.实验表明该算法可扩展性好,能够很好的识别出孤立点或噪声,并且有很好的精度.  相似文献   

11.
基于粗糙集方法提出了一种系统的决策表约简和决策规则提取方法. 为了避免现有属性离散化方法的不足,使用多元统计中的聚类分析,并借助树形图,R2、半偏相关以及伪F统计量,对连续属性进行离散化处理,得到适合粗糙集方法要求的决策表. 在此基础上,简化了基于可辨识矩阵和逻辑运算的传统属性约简算法,并完善了启发式算法进行属性值约简和决策规则提取. 最后,以应用实例验证了该方法的可行性和有效性.  相似文献   

12.
背景建模是运动目标检测的关键环节,提出了基于改进K均值背景建模的方法,并进行前景提取.该算法在HSV颜色空间对视频流的前N帧中的每个像素样本进行K均值聚类学习,K均值聚类的结果用来表示该像素螅背景模型;接着输入的视频流像素与背景模型比较,进行背景、可能前景和阴影的分离,并提出了一种像素相关的选择性背景更新机制;然后利用TOM(Time Out Map)方法来消除鬼影现象.实验结果表明该算法能够很好地对背景进行建模,较精确地提取出运动目标信息,对光照变化具有较强的鲁棒性.  相似文献   

13.
面对日益激烈的竞争环境,不管是金融行业,还是电信行业,企业运营营销方式从大众化营销转为根据不同的用户群体需求提供的差异化营销,而差异化营销的关键因素就是用户有效细分。本文根据通信用户通话数据作为分析对象,通过采集相关特点人群呼入呼出次数、通话持续时长等数据比较筛选后得到相关特征,对用户通话数据进行聚类,以此获取具有良好电信特征的群体。然后在以上筛选基础上,结合用户数据,采用K-means算法挖掘出用户数据与相关工作业务之间存在的相关关联性结果。企业可以此类用户细分为指导,为用户提供更好的优质服务。  相似文献   

14.
依据《全国主体功能区规划》提出的新的主体功能区概念体系,并结合区域地理环境和经济发展情况,构建新的主体功能区划分指标体系.分别运用K-均值聚类和系统聚类两种方法进行主体功能区的类型识别,并运用指数评价法和主导因素法对两种聚类法的结果进行分析,得出最合理的主体功能区划分方案.  相似文献   

15.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。  相似文献   

16.
Extensible Markup Language即"可扩展的标置语言"(简记为XML)的出现,为基于Web的数据挖掘带来了便利,开发人员能够用XML的格式标记交换数据。充分利用XML的优点,提供一种利用决策树ID3修正算法和聚类的方法,对XML文档信息进行挖掘,并结合实例说明这种方法。  相似文献   

17.
针对一类基于模糊感知器的神经模糊分类器,分析了隶属函数限制条件对分类结果的影响。并根据模糊密度的概念,提出一种为输入特征选择合适的模糊划分的方法。仿真结果表明了该方法的有效性。  相似文献   

18.
数据聚类是一个功能强大的技术,它能够把数据特征相似的对象划分为一类,但是并不是所有的聚类算法的实现都能产生相同的聚类结果;并且K均值算法的结果很大程度上依赖它的初始中心的选择;提出了一种新颖的关于K均值初始中心选择的策略;该算法是基于反向最近邻(RNN)搜索,检索一个给定的数据集,其最近的邻居是一个给定的查询点中的所有点;使用这种方法计算初始聚类中心结果发现是非常接近聚类算法所需的迭代聚类中心;对提出的算法应用到K均值聚类中给予了证明;用几种流行的数据集的实验结果表明了该算法的优点。  相似文献   

19.
基于进化策略的K-means聚类算法   总被引:3,自引:0,他引:3  
针对K-means聚类算法易陷入局部极小以及K值选取的问题,提出一类基于进化策略的聚类算法,可以有效地搜索最优聚类中心和聚类个数K;还提出了确定K值范围的经验公式,以减小搜索空间,提高搜索效率,并给出了理论分析.相对遗传算法而言,本方法鳊码简单,种群较小.对Fishers iris数据集的仿真实验表明,该方法得到最优解的可能性比经典算法大得多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号