首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
本文介绍了基于用户的协同过滤推荐的算法,并分析该算法的优劣,提出了解决办法。  相似文献   

2.
提出一种基于用户等级的协同过滤推荐算法, 解决了传统协同过滤推荐算法的扩展性问题. 该算法首先定义用户等级函数, 依据用户所评价的项目数确定用户等级; 并通过仅在用户等级的邻域内查找近邻的方法, 提高协同过滤推荐的效率. 实验结果表明, 该算法与传统协同过滤推荐算法相比, 在不影响推荐质量的前提下, 极大地提高了推荐效率.  相似文献   

3.
根据智能电视终端的性质,本文中提出基于时间段的协同过滤推荐算法.根据不同时间段观看电视的人群不同,将24小时划分为多个时间段,并且结合视频属性权值和基于物品的推荐算法实现一种适合智能电视的视频推荐算法,精准地定位该时段收看电视的家庭成员并进行动态的推荐.  相似文献   

4.
改进的协同过滤算法   总被引:3,自引:0,他引:3  
针对传统的CF(Collaborative Filtering)算法和基于项目评分的CF算法中存在的数据稀疏、扩展性及计算效率低的问题,通过引用评价系数,对其相似性计算和推荐集的选取方法进行了改进,提出了一种改进的基于相关相似性的CF算法,产生更为准确的用户兴趣度预测,从而提高系统推荐的质量与推荐效率.对改进算法进行实验和性能对比与评价的结果表明,改进算法与传统算法相比,能显著提高推荐精度,平均绝对误差(MAE:Mean Absolute Error)为0.53-0.77.  相似文献   

5.
提出融合用户评论的协同过滤推荐算法,通过挖掘电商网站的用户评论信息,获取用户评论中的产品特征和意见,通过计算每个特征意见对的极性,得到特征矩阵,结合用户意见质量形成的用户评分矩阵,求出用户评分的相似度.最后结合特征矩阵和用户评分相似度得出目标用户的综合相似度,并由预测评分得出产品推荐表,对用户进行产品推荐.实验结果表明,提出的算法与常用的推荐算法相比,改善了推荐的质量,同时推荐精度得到提高.  相似文献   

6.
通过研究用户和产品之间的关系,解决电视产品精准营销推荐和打包推荐两个问题.借鉴基于产品的协同过滤算法,以用户与产品相关度为推荐系数,分析其关联关系;通过网络爬虫获取辅助信息对用户和产品贴多级标签,按标签对打包用户推荐打包产品.在IBCF、random、popular三种算法中,选择popular算法时,每个用户最优推荐...  相似文献   

7.
对协同过滤算法中用户相似性计算方面进行优化,在计算用户相似性的公式中添加用户兴趣偏差度作为权重,以提高相似性计算的准确性.通过实验对改进的算法进行了验证,结果表明改进的算法提高了推荐系统的准确度.  相似文献   

8.
针对传统协同过滤推荐算法的数据稀疏以及用户关系衡量不准确的问题,提出了基于用户非对称相似关系的推荐算法.利用用户的潜在特征的样本数量,结合奇异值矩阵分解,计算用户之间非对称的相似度,明确用户间关系.仿真结果表明,随着邻居数量的增加,该算法的平均绝对误差始终优于传统算法,误差值在邻居数量为40~60之间值为最小,约为0.682,传统算法平均绝对误差值约为0.758,可以看出该算法判断用户关系较为准确,预测评分比传统算法更接近实际评分.  相似文献   

9.
罗俊丽 《科技信息》2013,(26):154-155
本文针对传统协同过滤算法存在的推荐精度低问题,提出了基于项目语义的协同过滤推荐算法。在项目相似性的计算过程中,融合了项目语义和历史评分数据两方面的信息,解决了传统算法中的数据稀疏性问题。在MovieLens数据集上的实验表明,该算法能够提高系统的推荐精度。  相似文献   

10.
针对传统协同过滤推荐算法在用户隐式反馈数据挖掘不够充分、用户兴趣偏好模型过于粗糙,提出一种标签重要程度的协同过滤推荐算法。用户使用标签的种类和频率可以反映用户的偏好和偏好程度;在此基础上建立新的用户兴趣偏好模型,将标签对用户的影响程度进行量化,建立新的相似度计算方法。最后获得目标用户的近邻集合和预测评分,为目标用户实施有效推荐。实验结果表明该算法大幅度提高了推荐的精准度、缓解了冷启动问题。  相似文献   

11.
个性化推荐系统是电子商务系统的一个重要研究内容,计算顾客之间的相似性或顾客聚类是产生良好推荐的关键.通过分析个性化推荐的应用特征,即顾客评分数据稀疏及其影响;在开放的电子商务环境中,新顾客不断加入和顾客偏好的迁移,使顾客簇不断发生变化,提出了一种基于自组织特征映射聚类的协同过滤推荐算法,对高堆稀疏的样本进行动态聚类.它具有下列特点:①在自组织特征映射聚类中,引入抑制函数,使其能够适应顾客评分数据的稀疏性;②设置神经元的分裂和合并过程,使其能够满足顾客聚类的动态变化.通过实验分析,表明该算法能够适应顾客评分数据稀疏和顾客聚类的动态变化特征,从而提高推荐质量.  相似文献   

12.
为解决传统协同过滤算法在产生推荐时实时性较差性问题,提出了一种基于蚁群模糊聚类的协同过滤推荐算法.该算法将分两个步骤产生推荐.离线时,应用蚁群模糊聚类技术,对基本用户进行聚类;在线时,利用已有的用户蚁群聚类寻找目标用户的最近邻居,并产生推荐.实验表明,基于蚁群模糊聚类的协同过滤推荐算法能提高推荐产生的速度,即实时性得到...  相似文献   

13.
为了提升酒店房型个性化推荐效果,将RFM模型与协同过滤技术相结合,设计了一种酒店房型推荐算法,并通过实验验证了该算法的准确性和有效性优于传统的协同过滤推荐算法.  相似文献   

14.
随着电子商务的发展状大,缺乏个性化服务成为制约电子商务发展的关键问题。基于web数据挖掘的电子商务推荐系统可以满足电子商务未来发展趋势的需要。本文以一组数据为实例阐述了基于web数据挖掘的协同过滤推荐算法是如何进行数据表示、近邻查询以及推荐产生这三个阶段的有效实施的。  相似文献   

15.
为解决传统的协同过滤算法不能准确理解用户的喜好,影响推荐准确率和推荐效果,提出基于社会化标签语义相似度的协同过滤算法.算法以标签语义相似度为基础,将项目资源和相关标签的语义信息纳入,显著提高了推荐系统的预测性能.研究结果表明:与以具体评分数据为基础的算法相比,该算法较好地解决了词相似度和句子相似度计算问题,推荐准确度和性能较以往的协同过滤算法有明显提高,改善了推荐效果.  相似文献   

16.
基于两阶段聚类的协作过滤推荐算法   总被引:1,自引:0,他引:1  
协作过滤推荐是目前主流的个性化推荐方式,但数据稀疏问题影响了推荐系统的性能.提出了基于两阶段聚类的协作推荐算法,降低了数据的稀疏性,提高了最近邻的准确度,而且推荐精度较以往传统的算法有明显提高,时间复杂度也有明显降低.  相似文献   

17.
协同过滤被广泛的应用在推荐系统中,传统计算相似度使用皮尔森相关系数,余弦相似度、Jaccard相似度等方法,但在处理稀疏数据时,其准确度不理想。针对这一问题,提出一种基于路径搜索的相似度计算方法,能够反映用户或项目之间间接关系。实验结果表明,相比传统的相似度计算方法,该方法在准确度上有较好的提升。  相似文献   

18.
考虑到产品评论对于消费者的购买行为非常具有参考价值,将评论挖掘引入协同过滤推荐模型中,通过产品评论特征值挖掘出用户对产品的详细特征偏好,并引入时间遗忘对产品兴趣的影响,设计出综合相似度,应用到协同过滤推荐模型中,提高了推荐的准确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号