共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
提出一种基于用户等级的协同过滤推荐算法, 解决了传统协同过滤推荐算法的扩展性问题. 该算法首先定义用户等级函数, 依据用户所评价的项目数确定用户等级; 并通过仅在用户等级的邻域内查找近邻的方法, 提高协同过滤推荐的效率. 实验结果表明, 该算法与传统协同过滤推荐算法相比, 在不影响推荐质量的前提下, 极大地提高了推荐效率. 相似文献
3.
根据智能电视终端的性质,本文中提出基于时间段的协同过滤推荐算法.根据不同时间段观看电视的人群不同,将24小时划分为多个时间段,并且结合视频属性权值和基于物品的推荐算法实现一种适合智能电视的视频推荐算法,精准地定位该时段收看电视的家庭成员并进行动态的推荐. 相似文献
4.
5.
《河南师范大学学报(自然科学版)》2017,(1):79-84
提出融合用户评论的协同过滤推荐算法,通过挖掘电商网站的用户评论信息,获取用户评论中的产品特征和意见,通过计算每个特征意见对的极性,得到特征矩阵,结合用户意见质量形成的用户评分矩阵,求出用户评分的相似度.最后结合特征矩阵和用户评分相似度得出目标用户的综合相似度,并由预测评分得出产品推荐表,对用户进行产品推荐.实验结果表明,提出的算法与常用的推荐算法相比,改善了推荐的质量,同时推荐精度得到提高. 相似文献
6.
对协同过滤算法中用户相似性计算方面进行优化,在计算用户相似性的公式中添加用户兴趣偏差度作为权重,以提高相似性计算的准确性.通过实验对改进的算法进行了验证,结果表明改进的算法提高了推荐系统的准确度. 相似文献
7.
针对传统协同过滤推荐算法的数据稀疏以及用户关系衡量不准确的问题,提出了基于用户非对称相似关系的推荐算法.利用用户的潜在特征的样本数量,结合奇异值矩阵分解,计算用户之间非对称的相似度,明确用户间关系.仿真结果表明,随着邻居数量的增加,该算法的平均绝对误差始终优于传统算法,误差值在邻居数量为40~60之间值为最小,约为0.682,传统算法平均绝对误差值约为0.758,可以看出该算法判断用户关系较为准确,预测评分比传统算法更接近实际评分. 相似文献
8.
本文针对传统协同过滤算法存在的推荐精度低问题,提出了基于项目语义的协同过滤推荐算法。在项目相似性的计算过程中,融合了项目语义和历史评分数据两方面的信息,解决了传统算法中的数据稀疏性问题。在MovieLens数据集上的实验表明,该算法能够提高系统的推荐精度。 相似文献
9.
针对传统协同过滤推荐算法在用户隐式反馈数据挖掘不够充分、用户兴趣偏好模型过于粗糙,提出一种标签重要程度的协同过滤推荐算法。用户使用标签的种类和频率可以反映用户的偏好和偏好程度;在此基础上建立新的用户兴趣偏好模型,将标签对用户的影响程度进行量化,建立新的相似度计算方法。最后获得目标用户的近邻集合和预测评分,为目标用户实施有效推荐。实验结果表明该算法大幅度提高了推荐的精准度、缓解了冷启动问题。 相似文献
10.
随着互联网的普及以及音乐库的高速更新换代,用户对音乐的需求变得越来越大,传统的推荐算法已经无法满足用户及时准确地寻找到所喜欢的音乐.因此,针对传统音乐推荐算法的不足,通过对协同过滤推荐算法的分析,提出基于内容和协同过滤加权融合的音乐推荐算法.与传统推荐算法及部分相关推荐算法比较,加权融合推荐算法计算出的推荐结果可以更高效快速地将用户感兴趣的音乐推荐出来. 相似文献
11.
针对网购行为中商品浏览量排名靠前而销量滞后的问题, 在用户购买意愿力的基础上, 提出一种增强评分矩阵协同过滤推荐算法. 首先, 利用惩罚因子作为增强型矩阵的评价权重, 加权表征用户购物意愿力的商品画像, 取得增强型矩阵的预测评分; 其次, 融合以基于项目的协同过滤推荐, 建立由潜在兴趣商品间的项目相似度矩阵得到的基础型评分矩阵; 最后, 以TOP-N结果向购买意愿较强的目标用户推荐排名靠前的商品. 实验结果表明: 与传统基于项目的协同过滤推荐算法相比, 增强评分矩阵协同过滤推荐算法的推荐准确率提升2.48%, 召回率提升4.31%, 综合值F1提升3.19%, 从而有效解决了用户感兴趣商品排名靠后, 且不被购买或购买次数较少的问题, 以达到购买意愿力较强、 目标用户更准的推荐宗旨, 进而提高推荐精度. 相似文献
12.
个性化推荐系统是电子商务系统的一个重要研究内容,计算顾客之间的相似性或顾客聚类是产生良好推荐的关键.通过分析个性化推荐的应用特征,即顾客评分数据稀疏及其影响;在开放的电子商务环境中,新顾客不断加入和顾客偏好的迁移,使顾客簇不断发生变化,提出了一种基于自组织特征映射聚类的协同过滤推荐算法,对高堆稀疏的样本进行动态聚类.它具有下列特点:①在自组织特征映射聚类中,引入抑制函数,使其能够适应顾客评分数据的稀疏性;②设置神经元的分裂和合并过程,使其能够满足顾客聚类的动态变化.通过实验分析,表明该算法能够适应顾客评分数据稀疏和顾客聚类的动态变化特征,从而提高推荐质量. 相似文献
13.
为解决传统协同过滤算法在产生推荐时实时性较差性问题,提出了一种基于蚁群模糊聚类的协同过滤推荐算法.该算法将分两个步骤产生推荐.离线时,应用蚁群模糊聚类技术,对基本用户进行聚类;在线时,利用已有的用户蚁群聚类寻找目标用户的最近邻居,并产生推荐.实验表明,基于蚁群模糊聚类的协同过滤推荐算法能提高推荐产生的速度,即实时性得到... 相似文献
14.
针对实时推荐过程中实际数据的稀疏性, 满足条件的项目或用户较少, 导致推荐精度较低的问题, 提出一种采用抽样近邻的协同过滤算法. 该算法充分利用评分用户矩阵提供的信息, 增加了参与到预测评分计算过程中的用户或项目, 从而解决了传统协同过滤算法在实际应用中的不足. 实验结果表明, 在增加在线计算时间较少的情况下所给算法可有效提高推荐精度. 相似文献
15.
周桂如 《吉首大学学报(自然科学版)》2018,39(5):29
为了提升酒店房型个性化推荐效果,将RFM模型与协同过滤技术相结合,设计了一种酒店房型推荐算法,并通过实验验证了该算法的准确性和有效性优于传统的协同过滤推荐算法. 相似文献
16.
在目前的在线教学系统中,用户对教学视频的选择具有一定的盲目性,根据这一特点,提出了一种基于协同过滤的在线教学视频推荐方法,可以将用户可能感兴趣的教学视频"推"给用户;首先将用户的观看视频纪录整理并保存至数据库中,依据各用户历史播放纪录以及用户的基本信息的兴趣差异来查询邻居用户,然后利用这些邻居用户的视频观看记录基于协同过滤的方法进行教学视频的推荐;改进了传统协同过滤推荐方法中普遍存在的稀疏性(Sparse)和冷启始(Cold Start)等问题,因此能使推荐更为精确;另外,通过用户是否观看所推荐的视频,可以对系统做出隐性评价以修正系统的参数,以提高推荐的准确性。 相似文献
17.
基于改进协同过滤算法的个性化新闻推荐技术 总被引:1,自引:0,他引:1
针对传统的基于内容协同过滤算法只是依据用户历史访问矩阵向用户做出推荐,存在数据稀疏以及不能及时反映用户兴趣变化等问题,个性化新闻推荐技术在传统的协同过滤算法基础上提出了新闻文本内容相似度的计算方式和时间窗的概念,新闻内容相似度计算中还考虑了特征词的词性和在新闻中的位置的影响,时间窗用来建立适应用户兴趣随时间变化的模型;实验结果表明,改进后的算法有效地改善了新闻用户历史访问数据的稀疏问题,及时捕获用户兴趣,F-measure值相比传统的算法最大提高了11.5%,平均绝对误差值最高下降了8%,显著提高了推荐质量. 相似文献
18.
随着电子商务的发展状大,缺乏个性化服务成为制约电子商务发展的关键问题。基于web数据挖掘的电子商务推荐系统可以满足电子商务未来发展趋势的需要。本文以一组数据为实例阐述了基于web数据挖掘的协同过滤推荐算法是如何进行数据表示、近邻查询以及推荐产生这三个阶段的有效实施的。 相似文献