首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombination between repeated sequences at various loci of the human genome are known to give rise to DNA rearrangements associated with many genetic disorders. Perhaps the most extensively characterized genomic region prone to rearrangement is 17p12, which is associated with the peripheral neuropathies, hereditary neuropathy with liability to pressure palsies (HNPP) and Charcot-Marie-Tooth disease type 1A (CMT1A;ref. 2). Homologous recombination between 24-kb flanking repeats, termed CMT1A-REPs, results in a 1.5-Mb deletion that is associated with HNPP, and the reciprocal duplication product is associated with CMT1A (ref. 2). Smith-Magenis syndrome (SMS) is a multiple congenital anomalies, mental retardation syndrome associated with a chromosome 17 microdeletion, del(17)(p11.2p11.2) (ref. 3,4). Most patients (>90%) carry deletions of the same genetic markers and define a common deletion. We report seven unrelated patients with de novo duplications of the same region deleted in SMS. A unique junction fragment, of the same apparent size, was identified in each patient by pulsed field gel electrophoresis (PFGE). Further molecular analyses suggest that the de novo17p11.2 duplication is preferentially paternal in origin, arises from unequal crossing over due to homologous recombination between flanking repeat gene clusters and probably represents the reciprocal recombination product of the SMS deletion. The clinical phenotype resulting from duplication [dup(17)(p11.2p11.2)] is milder than that associated with deficiency of this genomic region. This mechanism of reciprocal deletion and duplication via homologous recombination may not only pertain to the 17p11.2 region, but may also be common to other regions of the genome where interstitial microdeletion syndromes have been defined.  相似文献   

2.
Modulation of tumor suppressor activities may provide new opportunities for cancer therapy. Here we show that disruption of the gene Ppm1d encoding Wip1 phosphatase activated the p53 and p16 (also called Ink4a)-p19 (also called ARF) pathways through p38 MAPK signaling and suppressed in vitro transformation of mouse embryo fibroblasts (MEFs) by oncogenes. Disruption of the gene Cdkn2a (encoding p16 and p19), but not of Trp53 (encoding p53), reconstituted cell transformation in Ppm1d-null MEFs. In vivo, deletion of Ppm1d in mice bearing mouse mammary tumor virus (MMTV) promoter-driven oncogenes Erbb2 (also called c-neu) or Hras1 impaired mammary carcinogenesis, whereas reduced expression of p16 and p19 by methylation-induced silencing or inactivation of p38 MAPK correlated with tumor appearance. We conclude that inactivation or depletion of the Wip1 phosphatase with resultant p38 MAPK activation suppresses tumor appearance by modulating the Cdkn2a tumor-suppressor locus.  相似文献   

3.
Submicroscopic genomic copy number changes have been identified only recently as an important cause of mental retardation. We describe the detection of three interstitial, overlapping 17q21.31 microdeletions in a cohort of 1,200 mentally retarded individuals associated with a clearly recognizable clinical phenotype of mental retardation, hypotonia and a characteristic face. The deletions encompass the MAPT and CRHR1 genes and are associated with a common inversion polymorphism.  相似文献   

4.
Yue WH  Wang HF  Sun LD  Tang FL  Liu ZH  Zhang HX  Li WQ  Zhang YL  Zhang Y  Ma CC  Du B  Wang LF  Ren YQ  Yang YF  Hu XF  Wang Y  Deng W  Tan LW  Tan YL  Chen Q  Xu GM  Yang GG  Zuo XB  Yan H  Ruan YY  Lu TL  Han X  Ma XH  Wang Y  Cai LW  Jin C  Zhang HY  Yan J  Mi WF  Yin XY  Ma WB  Liu Q  Kang L  Sun W  Pan CY  Shuang M  Yang FD  Wang CY  Yang JL  Li KQ  Ma X  Li LJ  Yu X  Li QZ  Huang X  Lv LX  Li T  Zhao GP  Huang W  Zhang XJ  Zhang D 《Nature genetics》2011,43(12):1228-1231
To identify susceptibility loci for schizophrenia, we performed a two-stage genome-wide association study (GWAS) of schizophrenia in the Han Chinese population (GWAS: 746 individuals with schizophrenia and 1,599 healthy controls; validation: 4,027 individuals with schizophrenia and 5,603 healthy controls). We identified two susceptibility loci for schizophrenia at 6p21-p22.1 (rs1233710 in an intron of ZKSCAN4, P(combined) = 4.76 × 10(-11), odds ratio (OR) = 0.79; rs1635 in an exon of NKAPL, P(combined) = 6.91 × 10(-12), OR = 0.78; rs2142731 in an intron of PGBD1, P(combined) = 5.14 × 10(-10), OR = 0.79) and 11p11.2 (rs11038167 near the 5' UTR of TSPAN18, P(combined) = 1.09 × 10(-11), OR = 1.29; rs11038172, P(combined) = 7.21 × 10(-10), OR = 1.25; rs835784, P(combined) = 2.73 × 10(-11), OR = 1.27). These results add to previous evidence of susceptibility loci for schizophrenia at 6p21-p22.1 in the Han Chinese population. We found that NKAPL and ZKSCAN4 were expressed in postnatal day 0 (P0) mouse brain. These findings may lead to new insights into the pathogenesis of schizophrenia.  相似文献   

5.
Genomic disorders are characterized by the presence of flanking segmental duplications that predispose these regions to recurrent rearrangement. Based on the duplication architecture of the genome, we investigated 130 regions that we hypothesized as candidates for previously undescribed genomic disorders. We tested 290 individuals with mental retardation by BAC array comparative genomic hybridization and identified 16 pathogenic rearrangements, including de novo microdeletions of 17q21.31 found in four individuals. Using oligonucleotide arrays, we refined the breakpoints of this microdeletion, defining a 478-kb critical region containing six genes that were deleted in all four individuals. We mapped the breakpoints of this deletion and of four other pathogenic rearrangements in 1q21.1, 15q13, 15q24 and 17q12 to flanking segmental duplications, suggesting that these are also sites of recurrent rearrangement. In common with the 17q21.31 deletion, these breakpoint regions are sites of copy number polymorphism in controls, indicating that these may be inherently unstable genomic regions.  相似文献   

6.
Rett syndrome is caused by mutations in the gene MECP2 in approximately 80% of affected individuals. We describe a previously unknown MeCP2 isoform. Mutations unique to this isoform and the absence, until now, of identified mutations specific to the previously recognized protein indicate an important role for the newly discovered molecule in the pathogenesis of Rett syndrome.  相似文献   

7.
Heterozygous deletions within human chromosome 22q11 are the genetic basis of DiGeorge/velocardiofacial syndrome (DGS/VCFS), the most common deletion syndrome (1 in 4,000 live births) in humans. CRKL maps within the common deletion region for DGS/VCFS (ref. 2) and encodes an SH2-SH3-SH3 adapter protein closely related to the Crk gene products. Here we report that mice homozygous for a targeted null mutation at the CrkL locus (gene symbol Crkol for mice) exhibit defects in multiple cranial and cardiac neural crest derivatives including the cranial ganglia, aortic arch arteries, cardiac outflow tract, thymus, parathyroid glands and craniofacial structures. We show that the migration and early expansion of neural crest cells is unaffected in Crkol-/- embryos. These results therefore indicate an essential stage- and tissue-specific role for Crkol in the function, differentiation, and/or survival of neural crest cells during development. The similarity between the Crkol-/- phenotype and the clinical manifestations of DGS/VCFS implicate defects in CRKL-mediated signaling pathways as part of the molecular mechanism underlying this syndrome.  相似文献   

8.
Suka N  Luo K  Grunstein M 《Nature genetics》2002,32(3):378-383
The Sir3 protein helps form telomeric heterochromatin by interacting with hypoacetylated histone H4 lysine 16 (H4-Lys16). The molecular nature of the heterochromatin boundary is still unknown. Here we show that the MYST-like acetyltransferase Sas2p is required for the acetylation (Ac) of H4-Lys16 in euchromatin. In a sas2Delta strain or a phenocopy Lys16Arg mutant, Sir3p spreads from roughly 3 kb to roughly 15 kb, causing hypoacetylation and repression of adjacent chromatin. We also found that disruption of Sir3p binding in a deacetylase-deficient Sir 2Delta strain can be suppressed by sas2Delta. These data indicate that opposing effects of Sir2p and Sas2p on acetylation of H4-Lys16 maintain the boundary at telomeric heterochromatin.  相似文献   

9.
Silver-Russell syndrome (SRS, OMIM 180860) is a congenital disorder characterized by severe intrauterine and postnatal growth retardation, dysmorphic facial features and body asymmetry. SRS is genetically heterogenous with maternal uniparental disomy with respect to chromosome 7 occurring in approximately 10% of affected individuals. Given the crucial role of the 11p15 imprinted region in the control of fetal growth, we hypothesized that dysregulation of genes at 11p15 might be involved in syndromic intrauterine growth retardation. We identified an epimutation (demethylation) in the telomeric imprinting center region ICR1 of the 11p15 region in several individuals with clinically typical SRS. This epigenetic defect is associated with, and probably responsible for, relaxation of imprinting and biallelic expression of H19 and downregulation of IGF2. These findings provide new insight into the pathogenesis of SRS and strongly suggest that the 11p15 imprinted region, in addition to those of 7p11.2-p13 and 7q31-qter, is involved in SRS.  相似文献   

10.
Accurate and complete analysis of genome variation in large populations will be required to understand the role of genome variation in complex disease. We present an analytical framework for characterizing genome deletion polymorphism in populations using sequence data that are distributed across hundreds or thousands of genomes. Our approach uses population-level concepts to reinterpret the technical features of sequence data that often reflect structural variation. In the 1000 Genomes Project pilot, this approach identified deletion polymorphism across 168 genomes (sequenced at 4 × average coverage) with sensitivity and specificity unmatched by other algorithms. We also describe a way to determine the allelic state or genotype of each deletion polymorphism in each genome; the 1000 Genomes Project used this approach to type 13,826 deletion polymorphisms (48-995,664 bp) at high accuracy in populations. These methods offer a way to relate genome structural polymorphism to complex disease in populations.  相似文献   

11.
Definition of a consensus binding site for p53.   总被引:35,自引:0,他引:35  
Recent experiments have suggested that p53 action may be mediated through its interaction with DNA. We have now identified 18 human genomic clones that bind to p53 in vitro. Precise mapping of the binding sequences within these clones revealed a consensus binding site with a striking internal symmetry, consisting of two copies of the 10 base pair motif 5'-PuPuPuC(A/T)(T/A)GPyPyPy-3' separated by 0-13 base pairs. One copy of the motif was insufficient for binding, and subtle alterations of the motif, even when present in multiple copies, resulted in loss of affinity for p53. Mutants of p53, representing each of the four "hot spots" frequently altered in human cancers, failed to bind to the consensus dimer. These results define the DNA sequence elements with which p53 interacts in vitro and which may be important for p53 action in vivo.  相似文献   

12.
Familial cold autoinflammatory syndrome (FCAS, MIM 120100), commonly known as familial cold urticaria (FCU), is an autosomal-dominant systemic inflammatory disease characterized by intermittent episodes of rash, arthralgia, fever and conjunctivitis after generalized exposure to cold. FCAS was previously mapped to a 10-cM region on chromosome 1q44 (refs. 5,6). Muckle-Wells syndrome (MWS; MIM 191900), which also maps to chromosome 1q44, is an autosomal-dominant periodic fever syndrome with a similar phenotype except that symptoms are not precipitated by cold exposure and that sensorineural hearing loss is frequently also present. To identify the genes for FCAS and MWS, we screened exons in the 1q44 region for mutations by direct sequencing of genomic DNA from affected individuals and controls. This resulted in the identification of four distinct mutations in a gene that segregated with the disorder in three families with FCAS and one family with MWS. This gene, called CIAS1, is expressed in peripheral blood leukocytes and encodes a protein with a pyrin domain, a nucleotide-binding site (NBS, NACHT subfamily) domain and a leucine-rich repeat (LRR) motif region, suggesting a role in the regulation of inflammation and apoptosis.  相似文献   

13.
14.
15.
Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome   总被引:1,自引:0,他引:1  
Noonan syndrome is a developmental disorder characterized by short stature, facial dysmorphia, congenital heart defects and skeletal anomalies. Increased RAS-mitogen-activated protein kinase (MAPK) signaling due to PTPN11 and KRAS mutations causes 50% of cases of Noonan syndrome. Here, we report that 22 of 129 individuals with Noonan syndrome without PTPN11 or KRAS mutation have missense mutations in SOS1, which encodes a RAS-specific guanine nucleotide exchange factor. SOS1 mutations cluster at codons encoding residues implicated in the maintenance of SOS1 in its autoinhibited form. In addition, ectopic expression of two Noonan syndrome-associated mutants induces enhanced RAS and ERK activation. The phenotype associated with SOS1 defects lies within the Noonan syndrome spectrum but is distinctive, with a high prevalence of ectodermal abnormalities but generally normal development and linear growth. Our findings implicate gain-of-function mutations in a RAS guanine nucleotide exchange factor in disease for the first time and define a new mechanism by which upregulation of the RAS pathway can profoundly change human development.  相似文献   

16.
iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human   总被引:39,自引:0,他引:39  
We have previously shown that ASPP1 and ASPP2 are specific activators of p53; one mechanism by which wild-type p53 is tolerated in human breast carcinomas is through loss of ASPP activity. We have further shown that 53BP2, which corresponds to a C-terminal fragment of ASPP2, acts as a dominant negative inhibitor of p53 (ref. 1). Hence, an inhibitory form of ASPP resembling 53BP2 could allow cells to bypass the tumor-suppressor functions of p53 and the ASPP proteins. Here, we characterize such a protein, iASPP (inhibitory member of the ASPP family), encoded by PPP1R13L in humans and ape-1 in Caenorhabditis elegans. iASPP is an evolutionarily conserved inhibitor of p53; inhibition of iASPP by RNA-mediated interference or antisense RNA in C. elegans or human cells, respectively, induces p53-dependent apoptosis. Moreover, iASPP is an oncoprotein that cooperates with Ras, E1A and E7, but not mutant p53, to transform cells in vitro. Increased expression of iASPP also confers resistance to ultraviolet radiation and to cisplatin-induced apoptosis. iASPP expression is upregulated in human breast carcinomas expressing wild-type p53 and normal levels of ASPP. Inhibition of iASPP could provide an important new strategy for treating tumors expressing wild-type p53.  相似文献   

17.
Bardet-Biedl syndrome (BBS, OMIM 209900) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation and hypogenitalism. Individuals with BBS are also at increased risk for diabetes mellitus, hypertension and congenital heart disease. What was once thought to be a homogeneous autosomal recessive disorder is now known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13 p12 (BBS3), 15q22.3 q23 (BBS4), 2q31 (BBS5) and 20p12 (BBS6). There has been considerable interest in identifying the genes that underlie BBS, because some components of the phenotype are common. Cases of BBS mapping ro BBS6 are caused by mutations in MKKS; mutations in this gene also cause McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly and congenital heart defects). In addition, we recently used positional cloning to identify the genes underlying BBS2 (ref. 16) and BBS4 (ref. 17). The BBS6 protein has similarity to a Thermoplasma acidophilum chaperonin, whereas BBS2 and BBS4 have no significant similarity to chaperonins. It has recently been suggested that three mutated alleles (two at one locus, and a third at a second locus) may be required for manifestation of BBS (triallelic inheritance). Here we report the identification of the gene BBS1 and show that a missense mutation of this gene is a frequent cause of BBS. In addition, we provide data showing that this common mutation is not involved in triallelic inheritance.  相似文献   

18.
19.
Experiments involving overexpression of Ski have suggested that this gene is involved in neural tube development and muscle differentiation. In agreement with these findings, Ski-/- mice display a cranial neural tube defect that results in exencephaly and a marked reduction in skeletal muscle mass. Here we show that the penetrance and expressivity of the phenotype changes when the null mutation is backcrossed into the C57BL6/J background, with the principal change involving a switch from a neural tube defect to midline facial clefting. Other defects, including depressed nasal bridge, eye abnormalities, skeletal muscle defects and digit abnormalities, show increased penetrance in the C57BL6/J background. These phenotypes are interesting because they resemble some of the features observed in individuals diagnosed with 1p36 deletion syndrome, a disorder caused by monosomy of the short arm of human chromosome 1p (refs. 6-9). These similarities prompted us to re-examine the chromosomal location of human SKI and to determine whether SKI is included in the deletions of 1p36. We found that human SKI is located at distal 1p36.3 and is deleted in all of the individuals tested so far who have this syndrome. Thus, SKI may contribute to some of the phenotypes common in 1p36 deletion syndrome, and particularly to facial clefting.  相似文献   

20.
Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome.   总被引:14,自引:0,他引:14  
Rothmund-Thomson syndrome (RTS; also known as poikiloderma congenitale) is a rare, autosomal recessive genetic disorder characterized by abnormalities in skin and skeleton, juvenile cataracts, premature ageing and a predisposition to neoplasia. Cytogenetic studies indicate that cells from affected patients show genomic instability often associated with chromosomal rearrangements causing an acquired somatic mosaicism. The gene(s) responsible for RTS remains unknown. The genes responsible for Werner and Bloom syndromes (WRN and BLM, respectively) have been identified as homologues of Escherichia coli RecQ, which encodes a DNA helicase that unwinds double-stranded DNA into single-stranded DNAs. Other eukaryotic homologues thus far identified are human RECQL, Saccharomyces cerevisiae SGS1 and Schizosaccharomyces pombe rqh1. We recently cloned two new human helicase genes, RECQL4 at 8q24.3 and RECQL5 at 17q25, which encode members of the RecQ helicase family. Here, we report that three RTS patients carried two types of compound heterozygous mutations in RECQL4. The fact that the mutated alleles were inherited from the parents in one affected family and were not found in ethnically matched controls suggests that mutation of RECQL4 at human chromosome 8q24.3 is responsible for at least some cases of RTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号