共查询到20条相似文献,搜索用时 0 毫秒
1.
关于Diophantine方程x3±1=Dy2至今仍未解决.论文利用同余式、平方剩余、Pell方程解的性质、递归序列证明:(1)p≡1(mod 12)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(1,0);(2)p≡1(mod 24)为素数,q=12s2+1(s是正奇数)为素数,(p q)=-1时,Diophantine方程x3±1=pqy2仅有整数解(x,y)=(-1,0). 相似文献
2.
利用初等方法证明了Diophantine方程x3-1=91y2仅有整数解(x,y)=(1,0)。 相似文献
3.
关于Diophantine方程x~3±1=3Dy~2 总被引:1,自引:0,他引:1
设D是奇素数,运用同余式、平方剩余、递归序列、Maple程序等初等方法得出了当D=27t2+1(t∈Z+)时,Diophantine方程x3±1=3 Dy2无正整数解的一个充分条件. 相似文献
4.
设D是无平方因子的正整数,D=∏s i=1pi(s≥2),pi≡1(mod 6)(1≤i≤s)为奇素数。关于Diophantine方程x3+1=Dy2的初等解法至今仍未解决。主要利用同余式、平方剩余、Pell方程的解的性质、递归序列,证明了q≡7(mod 12)为奇素数,且(q/13)=-1时,Diophantine方程x3+1=13qy2当q=7时有整数解(4 367,±30 252),(-1,0);当q≠7时仅有整数解(x,y)=(-1,0)。 相似文献
5.
管训贵 《云南民族大学学报(自然科学版)》2012,21(6):438-441
设p是奇素数,证明了当p=6(4s+1)+1,其中s是非负整数时,方程x3-1=2py2仅有整数解(x,y)=(1,0);当p=6(4s+2)+1,其中s是非负整数时,方程x3+1=2py2仅有整数解(x,y)=(-1,0). 相似文献
6.
设Q=6p_1…p_sr_1…r_n(s,n∈Z_+),其中p_j≡1(mod 6)(j=1,2,…,s)为奇素数,r_i≡5(mod 6)(i=1,2,…,n)为奇素数.关于不定方程x3±1=Qy2的初等解法至今仍未解决.利用同余式、Legendre符号的性质、递归序列、Pell方程解的性质证明了:当D=r_1…r_n(n∈Z+),r_i≡5(mod 6)(i=1,2,…,n)为奇素数,p≡q≡1(mod 6)为奇素数,(p/q)=-1时,不定方程x~3±1=6pqDy~2仅有平凡解的两个充分条件. 相似文献
7.
管训贵 《甘肃联合大学学报(自然科学版)》2014,(2):20-24
设D=7q,q≡1(mod6)为奇素数.关于Diophantine方程x3±1=7qy2的初等解法至今仍未解决.主要利用同余式、平方剩余、Pell方程的解的性质、递归序列证明了(1)q=13,19,61时,丢番图方程x3-1=7qy2仅有整数解(x,y)=(1,0);(2)q=13,73,97时,丢番图方程x3+1=7qy2仅有整数解(x,y)=(-1,0). 相似文献
8.
运用初等方法及同余理论,研究丢番图方程正整数解。证明了Diophantine方程x3-1=38y2仅有两组正整数解(x,y)=(1,0)(7,3)。 相似文献
9.
主要利用递归数列、同余式、平方剩余以及Pell方程解的性质,证明了:设素数p≡q≡1(mod12),(p/q)=-1,Diophantine方程x3-1=3pqy2仅有整数解,即(x,y)=(1,0)。 相似文献
10.
管训贵 《华中师范大学学报(自然科学版)》2021,55(4):527-537
设q为奇素数且q≠7.利用同余式、平方剩余、Pell方程解的性质、递归序列证明了:1)当q ≡ 11,23,29,53,65,71,95,107,113,137,149,155(mod 168)时,不定方程 x3+1=7qy2 仅有整数解(x,y)=(-1,0);2)当 q≡ 11,23,29,53,71,95,107... 相似文献
11.
设pi≡1(mod 6)(1≤i≤s)为奇素数.关于不定方程x3-1=3s∏i=1piy2(s≥2)的初等解法至今仍未解决.主要利用Pell方程的解的性质、递归序列、同余式、平方剩余等证明了p≡q≡1(mod 6)为奇素数,pq≡7(mod 12),(p/q)=1时,不定方程x3-1=3pqy2仅有平凡解(x,y)=(1,0). 相似文献
12.
利用初等数论的方法证明了:如果D是适合D≡5(mod8)的奇素数,则方程x3+8=3Dy2无正整数解;如果D是适合D≡7(mod8)的奇素数,则方程x3-8=3Dy2无正整数解。 相似文献
13.
设D为奇素数,运用平方剩余、同余式、乐让德符号的性质等初等方法得出了Diophantine方程x3-53=2Dy2无x≠0(mod 5)的正整数解的两个充分条件. 相似文献
14.
设D=∏r+i(n∈Z),ri≡5 mod 6(1≤i≤n)为彼此不相同的奇素数,p≡1 mod 6为奇素数,关于丢番i=1图方程x3±1=2pDy2的初等解法至今仍未解决.运用Pell方程的解的性质、同余式、平方剩余、递归序列等讨论了丢番图方程x3±1=2pDy2的整数解的情况. 相似文献
15.
当D为奇素数,且D=3(8k+2)(8k+3)+1,其中k是非负整数,则方程x3+8=Dy2无正整数解;当D为奇素数,且D=3×4k(4k+1)+1,则方程x3-8=Dy2无正整数解. 相似文献
16.
管训贵 《广西师范学院学报(自然科学版)》2019,36(1)
利用同余式、平方剩余、Pell方程的解的性质、递归序列证明了丢番图方程x3-1=511y2仅有整数解(x,y)=(1,0)和(8,±1). 相似文献
17.
利用递归序列、同余式、Maple小程序、Pell方程的解的性质证明了Diophantine方程x3+8=397y2仅有整数解(x,y)=(-2,0). 相似文献
18.
设D 是无平方因子的正整数,D =∏si=1pi(s≥2),pi≡1(mod6)(1≤i≤s)为奇素数。关于Diophantine方程x3+1=Dy2的初等解法至今仍未解决。主要利用同余式、平方剩余、Pell方程的解的性质、递归序列,证明了q≡7(mod12)为奇素数,且q( )13=-1时,Diophantine方程x3+1=13qy2当q=7时有整数解(4367,±30252),(-1,0);当q≠7时仅有整数解(x,y)=(-1,0)。
相似文献
相似文献
19.
利用数论中的同余,勒让德符号的性质及其它一些方法,研究丢番图方程x3±1=Dy2(D=D1p,D是无平方因子的正整数,其中D1是不能被3或6k+1之形的素数整除的正整数,p=3(12r+7)(12r+8)+1,r是正整数)的解的情况。证明了当D1≡7(mod12)时,方程x3+1=Dy2无正整数解;当D1≡5,8(mod12)时,方程x3-1=Dy2无正整数解。 相似文献
20.
设素数p≡1(mod 24),(p/13)=-1。关于丢番图方程x3+1=13py2的初等解法至今仍未解决。主要利用递归序列、同余式、平方剩余、Pell方程的解的性质,证明了丢番图方程x3+1=13py2仅有整数解(x,y)=(-1,0)。 相似文献