共查询到19条相似文献,搜索用时 93 毫秒
1.
对Fenton氧化-活性炭吸附组和处理印染废水进行了研究。利用正交实验确定了单独Fenton氧化处理印染废水的最佳条件:Fe2+:0.05g/L;H2O2:40mL·L-1;处理时间40min;pH值3,脱色率为72.1%。考察了活性炭投加量、pH值、处理时间等因素对活性炭吸附效果的影响,结果表明,活性炭吸附处理印染废水的最佳条件:活性炭投加量0.4g·L-1;处理时间40min;pH值2~3,脱色率为69.2%。在Fenton氧化和活性炭吸附的最佳处理条件下进行三种不同组合方式处理印染废水,以二者同时进行处理的方式最佳,脱色率可达90%以上。活性炭对Fenton氧化具有一定的催化作用,二者组合处理印染废水具有较好的脱色效果。 相似文献
2.
针对阿维菌素、盐霉素废水经厌氧-好氧工艺处理后难以进一步生物降解的特点,采用Fenton氧化法进行深度处理。试验研究探讨了不同pH值、反应时间、H_2O_2投加量以及n(H_2O_2)∶n(Fe2+)对COD去除效果的影响。在pH值为3.0,H_2O_2(体积分数为30%)投加量为1.5mL/L,n(H_2O_2)∶n(Fe~(2+))为5∶1条件下,废水COD质量浓度由224mg/L下降到64.3mg/L,去除率达到71.3%。 相似文献
3.
4.
超声氧化联合处理油墨废水试验研究 总被引:1,自引:0,他引:1
采用超声与Fenton试剂氧化组合技术处理油墨废水,考察pH值、Fe~2+与H_2O_2浓度比、H_2O_2浓度、超声频率以及功率对处理效果的影响.研究结果表明,对于进水COD_(Cr),浓度为810 mg/L,色度为160的油墨废水,在最佳操作条件下,反应240 min后,US-Fenton法COD_(Cr),去除率达81.4%,色度去除率达到100%,与单独Fenton试剂氧化法相比,分别提高16.0%和5.5%左右.US-Fenton试剂耦合的方法对油墨废水的降解效果优于两者的简单叠加,但随着反应时间的延长,协同效应逐渐减小. 相似文献
5.
Fenton氧化深度处理石化废水的试验研究 总被引:1,自引:0,他引:1
采用Fenton法对某石化企业污水处理厂二级处理后出水进行深度处理。实验结果表明:Fenton反应迅速,可快速降低CODCr,水样CODCr为(40~60)mg/L,pH值3—4,H2O2/Fe2+摩尔比为5∶1,H2O2(质量分数30%)投加量为0.6mL/L时,反应时间为30min,出水CODCr可降低至20 mg/L以下,可达到工业水回用标准的要求。 相似文献
6.
随着我国农药产量的逐年提高,农药废水的处理形势也日益严峻,农药废水处理的新工艺、新法成为科研工作者研究的热点。本文概述了臭氧类氧化、Fenton试剂氧化和光催化氧化三种农药废水催化氧化处理技术的原理和研究现状,并对未来的技术发展趋势进行了展望。 相似文献
7.
本实验使用Fenton试剂对炸药废水进行处理时,通过考察反应时间、双氧水用量、硫酸亚铁用量、pH 以及反应温度对炸药废水TOC去除率的影响,同时应用正交实验设计确定Fenton试剂处理炸药废水的最佳操作条件. 结果表明,随着反应时间的延长,TOC的去除率增大,最佳反应时间为70 min,之后趋于平衡;当双氧水(30%)用量为70 mL/L、FeSO4用量为600 mg/L、pH为3、反应温度25℃时去除率最高,达到92.06%.调节pH值后去除率达96.23%, TNT含量1.8 mg/L. 相似文献
8.
采用水解酸化—Fenton试剂组合工艺对某牛仔制衣厂洗水废水进行处理。确定了水解酸化最佳反应时间为8h,考察了硫酸亚铁投加量、双氧水投加量、反应时间及pH值对洗水废水的色度及COD去除率的影响,通过正交实验确定了Fenton试剂处理该废水的最佳操作条件为:反应时间30min、双氧水(30%)投加量4mL/L、硫酸亚铁投加量300mg/L、pH值为4左右。在最佳条件下,色度与COD去除率分别达到95%和88%以上,出水COD值为145mg/L左右,水质澄清,符合GB 8978—1996《污水综合排放标准》中的二级标准,可达标排放。 相似文献
9.
Fenton氧化技术处理迫击炮炸药废水研究 总被引:1,自引:0,他引:1
以迫击炮弹炸药废水为研究对象,用Fenton试剂的高氧化技术法对废水进行处理,经实验确定Fenton试剂处理炸药废水的最佳操作条件. 相似文献
10.
采用Fenton化学氧化法对造纸废水进行深度处理,考察了H2O2和Fe2+浓度、pH、反应时间等因素对COD去除率的影响。在H2O2(3%)投加量为13.33mL/L,FeSO4.7H2O投量为0.9g/L,pH为5,反应15min后静置5min的条件下,初始COD为290mg/L,色度为50倍的造纸生化出水的COD去除率可达到72%。结果表明,Fenton化学氧化法深度处理该废水可以取到很好的效果。 相似文献
11.
Fenton法及组合Fenton法在炸药废水处理中的应用 总被引:2,自引:0,他引:2
介绍了Fenton法及组合Fenton法处理废水的基本原理和特点,综述了近年来Fenton法及组合Fenton法在炸药废水处理方面的应用研究进展及其前景。 相似文献
12.
制药废水是一种难生物降解的高浓度有机工业废水,处理困难.研究以某制药股份有限公司综合排放废水为对象,分别采用Fenton和UV-Fenton法对制药废水进行处理,分析试剂投加量、反应初始pH和反应时间等对反应的影响.结果表明,Fenton法处理制药废水的最佳条件为:FeSO4·7H2O投加0.036 mol/L,H2O2投加0.128 mol/L,初始pH为4.3,反应时间为2 h,CODCr去除率为43.9%. UV-Fenton法处理制药废水缩短反应时间,减少试剂投加量,最佳处理条件为:UV处理时间为7 min,FeSO4·7H2O投加0.029 mol/L,H2O2投加0.102 mol/L,初始pH为4.3,反应时间为75 min,最佳条件下CODCr去除率优于Fenton法,可达63.5%,且污水B/C增至0.39,提高可生化性. 相似文献
13.
以长治某焦化厂二级处理后的出水为研究对象,采用Fenton试剂法对其进行深度处理,在pH =3,反应时间120 min,转速为300 r/min条件下于磁力搅拌器中反应.可知,温度对反应影响最大,H2O2浓度次之,Fe2浓度最后.相应的温度为40℃、Fe2浓度为4 mmol/L,H2O2浓度为18 mmol/L.此时,处理后出水COD =95 mg/L,氨氮=1.62 mg/L均可达到《炼焦化学工业污染物排放标准》(GB 16171-2012)的要求.另外,经紫外扫描、UV254、GC/MS、BOD5/COD分析,可知焦化处理二级出水中含有C=C双键的单环芳香族化合物,经Fenton试剂法处理后,C=C双键断链,大分子物质转化为胺类和小分子物质,生化性能得到明显提高.实验结果表明Fenton试剂法是处理焦化废水的有效工艺. 相似文献
14.
酵母废水的Fenton试剂氧化预处理 总被引:11,自引:0,他引:11
采用Fenton试剂对高化学需氧量(CODD)、高色度及高盐度酵母废水进行了氧化预处理,考察废水组成的变化,发现体系在初始pH值为2.5,温度为25℃,H2O用量为600mg/L,Fe^2+用量为200mg/L,反应时间为90min的条件下,废水CODCr从15700mg/L降至3100mg/L,色度从1600倍降至16倍,废水的可生化性BOD5/CODCr值由0.17升高到0.46,而且CODCr去除率与色度去除率存在一定的线性关系.GC/MS分析结果表明,Fenton试剂氧化改变了酵母废水中多酚类化合物、焦糖化合物及美拉德色素等难降解物质的结构,使酵母废水容易降解. 相似文献
15.
维生素类制药废水处理工艺 总被引:1,自引:0,他引:1
将好氧共基质工艺、厌氧-好氧工艺、混凝以及Fenton试剂处理工艺用于维生素类制药废水的处理并加以比较.结果表明:在好氧共基质条件下,葡萄糖人工配水和制药废水的最佳COD浓度比为1:5;厌氧反应器的串联使用提高了反应器中的生物降解效果,有利于反应器的长期稳定运行;混凝工艺适合作为生化处理的预处理工艺,Fenton试剂则不适于处理此种制药废水. 相似文献
16.
本文详细地探讨了用连续流完全混合活性污泥法处理红霉素、痢特灵,呋喃啶生产废水的动力学,测定了该废水的活性污泥动力学常数,并提出了用动力学常数设计曝气池的方法。当试验水温为20℃时,求得的动力学常数为:最大比基质降解速率vmax=1.5d-1;饱和常数 Ks=35.2mg/1,产率 Y=0.368,衰减常数 Kd=0.045d-1, 基质耗氧系数 a’=0.25和内源呼吸耗氧系数 b’=0.d-1。 相似文献
17.
用Fenton试剂处理洋茉莉醛香料废水的试验研究 总被引:6,自引:0,他引:6
通过试验,确定了Fenton试剂法处理洋茉莉醛生产废水的最佳条件是:pH为3.0,H2O2与Fe2 的最佳摩尔比为10∶1,每200mL废水需H2O2(30%)的最佳用量为20mL.反应2.0h后CODCr的去除率达到80%以上.此方法对于洋茉莉醛生产废水的处理效果较好. 相似文献
18.
微电解-Fenton氧化处理难降解蒽醌染整废水试验 总被引:8,自引:0,他引:8
蒽醌染整废水的COD质量浓度ρ(COD)为750~850 mg.L-1,色度400~500倍,ρ(BOD5)/ρ(COD)为0.10~0.13,属难生化处理废水.采用微电解-Fenton试剂催化氧化组合工艺对该废水进行处理,研究探讨该处理过程各种反应条件和工艺参数对处理效果的影响,以及难降解有机物的转化途径.当微电解柱铁炭体积比1∶1,进水pH值4.0,反应时间2.0 h,Al2(SO4)3投加量150 mg.L-1,助凝剂PAM投加量3 mg.L-1,沉淀时间30 min时,微电解-混凝沉淀处理出水的ρ(COD)为208~342 mg.L-1,ρ(BOD5)为17~30 mg.L-1,色度15~40倍;后续处理采用Fenton试剂催化氧化,当FeSO4投加量200 mg.L-1,H2O2投加量100 mg.L-1,pH值5.0,反应时间30 min时,处理出水的ρ(COD)≤50 mg.L-1,ρ(BOD5)≤10 mg.L-1,色度≤20倍数. 相似文献
19.
以河南省某皮革厂二沉池出水为研究对象,研究了类Fenton试剂+催化剂A氧化法对皮革废水的处理效果及影响因素.通过试验,探讨了H2O2与Fe2+两者的投配比、反应时间、PAM的投加量、曝气时间等相关因素对COD去除率的影响.结果表明:2.5%H2O2与10%FeSO4·7H2O的最佳摩尔比是1∶1,最佳投配量分别是9.6mL和22.0mL;0.6%PAM最佳投加量为0.8mL,反应时间为1.5h,曝气时间为10min.经过处理,出水COD控制在80mg·L-1以内,效果显著,达到《污水综合排放标准》(GB8978-1996)皮革废水一级标准. 相似文献