首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Photo-induced degradation of a monolayer of Ru(Ⅱ) complex absorbed on anatase TiO2 thin film was studied by using resonant micro-Raman spectroscopy. Under intense light radiation of a laser and in the absence of a reducing agent, the dye decomposed quickly. When the dye-sensitized TiO2 thin film electrode was covered by a reducing agent, namely the I^-/I3^- redox couple, the photo-induced decomposing rate was slowed by a factor of -10^6. In both cases, the dye decomposed with time under an exponential law.  相似文献   

2.
Zn-doped titanium oxide (TiO2) nanotubes electrode was prepared on a titanium plate by direct anodic oxidation and immersing method in sequence. Field emission scanning electron microscopy (FESEM) showed that the Zn-doped TiO2 nanotubes were well aligned and organized into high density uniform arrays with diameter ranging from 50 to 90 nm. The length and the thickness were about 200 and 15 nm respectively. TiO2 anatase phase was identified by X-ray diffraction (XRD). X-ray photoelectronspectroscopy (XPS) indicated that Zn ions were mainly located on the surface of TiO2 nanotubes in form of ZnO clusters. Compared with TiO2 nanotubes electrode, about 20 nm red shift in the spectrum of UV-vis absorption was observed. The degradation of pentachlorophenol (PCP) in aqueous solution under the same condition (initial concentration of PCP: 20 mg/L; concentration of Na2SO4:0.01 mol/L and pH: 7.03) was carried out using Zn-doped TiO2 nanotubes electrode and TiO2 nanotubes electrode. The degradation rates of PCP using Zn-doped TiO2 nanotubes electrode were found to be twice and 5.8 times as high as that using TiO2 nanotubes electrode by UV radiation (400 μw/cm^2) and visible light radiation (4500 μw/cm^2), respectively. 73.5% of PCP was removed using Zn-doped TiO2 nanotubes electrode against 45.5% removed using TiO2 nanotubes electrode in 120 min under UV radiation. While under visible light radiation, the degradation efficiency of PCP was 18.4% using Zn-doped TiO2 nanotubes electrode against 3.2% using TiO2 nanotubes electrode in 120 min. The optimum concentration of Zn doping was found to be 0.909%. The PCP degradation efficiencies of the 10 repeated experiments by Zn-doped TiO2 nanotubes electrode were rather stable with the deviation within 3.0%.  相似文献   

3.
Climate change and the consumption of non-renewable resources are considered as the greatest problems facing humankind.Because of this,photocatalysis research has been rapidly expanding.TiO2 nanoparticles have been extensively investigated for photocatalytic applications including the decomposition of organic compounds and production of H2 as a fuel using solar energy. This article reviews the structure and electronic properties of TiO2,compares TiO2 with other common semiconductors used for photocatalytic applications and clarifies the advantages of using TiO2 nanoparticles.TiO2 is considered close to an ideal semi- conductor for photocatalysis but possesses certain limitations such as poor absorption of visible radiation and rapid recombination of photogenerated electron/hole pairs.In this review article,various methods used to enhance the photocatalytic characteristics of TiO2 including dye sensitization,doping,coupling and capping are discussed.Environmental and energy applications of TiO2, including photocatalytic treatment of wastewater,pesticide degradation and water splitting to produce hydrogen have been summarized.  相似文献   

4.
Different paste has been used for preparing porous TiO2 thin film by screen-printing technique, the main component of it comes from commercial TiO2 P25 power. The dye-sensitized solar cell based on this TiO2 thin film without further chemical treatments exhibits high overall conversion efficiency of 5.81%―6.70%, even with low TiO2 content and thin film thickness. The experimental repeatability is nice and the properties of the films are uniform.  相似文献   

5.
In this paper, CdS quantum dots sensitized TiO2 composite powders (QD-CdS/TiO2) were synthesized by impregnating TiO2 powder into CdS sol with different concentrations. X-ray diffraction pattern (XRD) shows the crystal structures of CdS and TiO2 are cubic phase and anatase phase separately in QD- CdS/TiO2 powder samples; the crystal size of CdS in QD- CdS/TiO2 is about 3-7 nm, while TiO2 crystal size is about 20 nm. With increasing CdS content in QD-CdS/TiO2 composite, the UV-Vis absorption spectrum shifted to the longer wavelength lines, exhibiting obvious quantum size effect. The fluorescence intensity of QD-CdS/TiO2 irradiated by blue light is weaker than that of pure CdS. When the molar ratio of CdS and TiO2 is about 1∶2, the QD-CdS/TiO2 powder has the best catalytic properties under visible-light irradiation, and the degradation rate of rhodamine B (RhB) is up to 92.2% within 60 min.  相似文献   

6.
A novel two-step method for the synthesis of monoclinic titanium oxide (i.e. TiO2(B)) nanosheets is presented in this report. The method is featured by two steps: 1) synthesis of hydrogen titanate nanosheets, followed by 2) calcination of the titanate nanosheets at elevated temperatures. The hydrogen titanate nanosheets were prepared first by autoclaving anatase TiO2 powders, obtained by air cal- cining an ethanol-gel of Ti(OH)4 at 500℃, in aqueous NaOH (10 mol/L) at 150-200℃, and then by washing with hydro- chloric acid under supersonic irradiation. While sizes of the nanosheets were found to increase with increasing the temperature of the hydrothermal treatment, the calcination at 400-500℃ of the hydrogen titanate nanosheets that were synthesized at higher autoclaving temperatures (180-200℃) produced monoclinic TiO2 nanosheets with a uniform morphology. By contrast, the same calcination of the titanate nanosheets synthesized at the autoclaving temperature 180℃ led to anatase TiO2 nanoparticles.  相似文献   

7.
Novel N-doped TiO2 (denoted as N-NTA600) was prepared by treating nanotube titanic acid (NTA) in NH3 flow. Its visible light photocatalytic activity,evaluated by decoloration reaction of methylene blue,is higher than that of N-P25(600) prepared by treatment of P25-TiO2 in the same condition. It is suggested that the origin of visible-light photocatalytic activity is single-electron-trapped oxygen vacancy (Vo·) modified by chemisorbed NO.  相似文献   

8.
In order to obtain TiO2 with high photocatalytic activity, a cathode reduction was used to dope I7+ and I5+ into TiO2 nanotubes of anodized Ti in C2H2O4•2H2O + NH4F electrolyte. SEM images show that the anodization method integrated the preparation with the doping process, which for nonmetals-doping is advantageous to maintain the morphological integrity of TiO2 nanotubes. I7+-I5+-doping enhances the UV response of TiO2 and result in a red-shift. Under UV/visible irradiation, a I7+-I5+-doped sample (400°C) showed the highest Iph and photocatalytic efficiency. A part of I in the I7+-I5+-doped sample is involved in the UV response, the red-shift and the higher Iph.  相似文献   

9.
A fixed bed photocatalytic reactor was designed,and dynamic fast scan of UV-Vis adsorption spectrum was adopted to study the photocatalytic degradation dynamic behavior of Rhodamine B,a kind of dye generally recognized as to be degraded difficultly ,on the surface of nanosized TiO2 thin film,The results indicate that the photocatalytic degradation process of Rhodamine B does not comply with the first-order reaction kinetic process ,As a result,a kinetic model of Rhodamine B photocataly tic degradation ,reaction is brough forward ,and the model is proved by the theoretical deduction and experiment.  相似文献   

10.
Photoelectrocatalytic degradation of malachite green (MG) under visible light irradiation with TiO2-film electrode has been investigated to reveal the mechanism for TiO2 photocatalytic degradation of dyes. The supported TiO2 electrode was prepared in laboratory and detected by scanning electron micros-copy and X-ray diffractometry. We have examined the degradation kinetics, change in degradation rate of MG and photocurrent change with the bias potential, voltage-induced adsorption of dyes, accumu-lation of ...  相似文献   

11.
In this study,TiO2@MgO core-shell film was obtained by using a simple chemical bath deposition method to coat a thin MgO film around TiO2 nanoparticles. The core-shell configuration was characterized by X-ray diffractometer (XRD),scanning elec-tron microscopy (SEM),energy dispersive X-ray spectroscopy (EDX),and high-resolution transmission electron microscopy (HRTEM). Lattice fringes were observed for the TiO2 particles,and the MgO shell showed an amorphous structure,revealing a clear distinction between the core and shell materials. Applying the core-shell film as photoanode to the dye-sensitized solar cells (DSSCs),it shows a superior performance compared to the pure TiO2 electrode. Under the illumination of simulated sunlight (75 mW-cm-2),the short circuit photocurrent (Jsc),the open circuit photovoltage (Voc),and the fill factor (fF) are 8.80 mA-cm-2,646 mV,and 0.69,respectively,and the conversion efficiency (η) in-creased by 21.8% (from 4.32% to 5.26%) when dipping for opti-mum condition.  相似文献   

12.
We prepared highly-ordered titanium dioxide nanotube arrays (TNAs) by anodizing Ti foils in F-containing electrolytes.The crystalline nature and morphology of the TNAs were studied using X-ray diffraction patterns and scanning electron microscopy.We found the morphology of TNAs affects the light-to-electricity conversion efficiency (η) of dye-sensitized solar cells (DSSCs).The efficiency of DSSCs reached 5.95% under the condition of light illuminated from the counter electrode.The high efficiency of TNA-based DSSCs was attributed to the neat top surface of TNAs,which allows more dye molecule loading on the surface of the TiO 2 nanotubes,and fewer electron recombination centers and a low interface resistance of integrated TNAs.  相似文献   

13.
To enhance the photocatalytic activity of TiO2 nanotubes,tetracycline hydrochloride(TC) molecularly imprinted titania modified TiO2 nanotubes(MIP-TiO2) was prepared by liquid phase deposition,which improved the molecular recognition ability of the photocatalyst toward template molecules.This MIP-TiO2 photocatalyst was characterized by ESEM and XRD,which showed that the imprinted titania was deposited on the nanotube uniformly and was of well-crystalized anatase-type.In the adsorption experiments,MIP-TiO2 exhibited a high adsorption capacity(about 1.6 times higher than that of TiO2 nanotubes) for TC mainly because of its imprinted sites and high surface area.Under UV irradiation MIP-TiO2 showed enhanced photocatalytic activity with an apparent first-order rate constant 1.9-fold that of TiO 2 nanotubes.  相似文献   

14.
Dye-sensitized solar cells (DSSCs) based on nanocrys- talline TiO2 thin film electrodes have been widely investi- gated since they were invented by Gr?tzel et al. in 1991[1-3]. Nanocrystalline TiO2 thin film electrodes are usually pre- pared by coating TiO2 colloid with organic additives on conductive glass substrates and annealing at 400-450℃ to remove organic additives and achieve good electrical contact between TiO2 particles and between TiO2 particles and conductive substrates, which…  相似文献   

15.
The three composites Y2O3 :Er3+ , Y2O3 :Er3+ /Yb 3+ andY2O3 :Er3+ /TiO2 were prepared using coprecipitation and sol-gel techniques. Their morphology, specific surface area, porosity, UV-vis. absorption spectra and fluorescence spectra were measured using SEM, TEM, surface analysis, UV-vis. absorption and photoluminescence spectrophotometry. SEM and TEM showed that samples prepared using coprecipitation were dispersed, while Y2O3 :Er3+ /TiO2 particles possessed a mesoporous surface and average diameter of ab...  相似文献   

16.
Photocatalysis-membrane separation coupling technology has been a heavily researched area in water and wastewater treatment during recent years. The membrane separation process allows the photocatalyst to be easily separated, recovered and reused. More significantly, the membrane is efficient to maintain high flux of membranes as the photocatalyst can reduce the membrane fouling problem which is a hindrance in the development of membrane process. Moreover, some synergistic effects can also be produced, and ...  相似文献   

17.
Four types of TiO 2 thin-film electrodes were fabricated from TiO 2 and Fe(III) doped TiO 2 sols using a layer-by-layer dip-coating technique. Electrodes fabricated were TF (pure TiO 2 surface, Fe(III)-TiO 2 bottom layer), FT (Fe(III)-TiO 2 surface, pure TiO 2 bottom layer), TT (both layers pure TiO 2 ) and FF (both layers Fe(III)-TiO 2 ). The photoelectrochemical behavior of these electrodes was characterized using linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and steady-state photocurrent measurements in aqueous 0.1 mol L –1 NaNO 3 containing varying concentrations of glucose or potassium hydrogen phthalate (KHP). EIS and LSV results revealed that exciton separation efficiency followed the sequence of TF﹥TT﹥FT > FF. Under a constant potential of +0.3 V, steady-state photocurrent profiles were recorded with varying organic compound concentrations. The TF electrode possessed the greatest photocatalytic capacity for oxidizing glucose and KHP, and possessed a KHP anti-poisoning effect. Enhanced photoelectrochemical performance of the TF electrode was attributed to effective exciton separation because of the layered TF structure.  相似文献   

18.
The new microparticles,2-formylthiophene(FT)/TiO2 and(E)-1,2-bis(5-formyl-2-thienyl) ethylene(EBFTE)/TiO2 were synthesized with a silane coupling agent.The prepared TiO2 composites were characterized using Ultraviolet-Vis absorption(UV-Vis),X-ray diffraction(XRD),scanning electron microscope(SEM) and thermogravimetric analyzer(TGA).Methylene blue was used as a model material to examine the photocatalytic activities of the prepared catalysts under both Ultraviolet-Vis(UV) and visible(Vis) light.The enhanced photocatalytic activities were observed in the presence of(FT)/TiO2 and EBFTE/TiO2 under Vis light.It suggests that FT or EBFTE plays a block or active role in the photodegradation mechanisms under UV and Vis light irradiation,respectively.  相似文献   

19.
Fe3O4@SiO2 core–shell composite nanoparticles were successfully prepared by a one-pot process. Tetraethyl-orthosilicate was used as a surfactant to synthesize Fe3O4@SiO2 core–shell structures from prepared Fe3O4 nanoparticles. The properties of the Fe3O4 and Fe3O4@SiO2 composite nanoparticles were studied by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. The prepared Fe3O4 particles were approximately 12 nm in size, and the thickness of the SiO2 coating was approximately 4 nm. The magnetic properties were studied by vibrating sample magnetometry. The results show that the maximum saturation magnetization of the Fe3O4@SiO2 powder (34.85 A·m2·kg–1) was markedly lower than that of the Fe3O4 powder (79.55 A·m2·kg–1), which demonstrates that Fe3O4 was successfully wrapped by SiO2. The Fe3O4@SiO2 composite nanoparticles have broad prospects in biomedical applications; thus, our next study will apply them in magnetic resonance imaging.  相似文献   

20.
TiO_2光催化降解亚甲基蓝机理的研究   总被引:2,自引:0,他引:2  
进行了亚甲基蓝光解、吸附及光催化对比实验,以及·OH清除剂叔丁醇、电子空穴对(e-,h-,h+)结合抑制剂过氧化氢、空穴(h_(VB)+)结合抑制剂过氧化氢、空穴(h_(VB)+)清除剂碘化钾、单线态氧(+)清除剂碘化钾、单线态氧(1O_2)清除剂叠氮钠、超氧自由基(O_21O_2)清除剂叠氮钠、超氧自由基(O_2(·-))清除剂苯醌对TiO_2光催化降解亚甲基蓝降解率的影响实验,同时测定了光催化反应过程中H_2O_2的生成,证明了TiO_2光催化降解亚甲基蓝体系中主要活性氧形态为·OH,O_2(·-))清除剂苯醌对TiO_2光催化降解亚甲基蓝降解率的影响实验,同时测定了光催化反应过程中H_2O_2的生成,证明了TiO_2光催化降解亚甲基蓝体系中主要活性氧形态为·OH,O_2(·-)和(·-)和1O_2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号