共查询到18条相似文献,搜索用时 15 毫秒
1.
为有效监测刀具磨损状态,提出一种基于局部均值分解的刀具故障诊断方法.将声发射信号自适应地分解为一系列乘积函数,选取包含主要故障信息的前8个乘积函数分量,获得每个乘积函数分量的平均能量,并组成特征向量.分别提取正常切削、中期磨损和严重磨损三种状态下的特征向量,利用频带能量的变化识别刀具磨损特征.实验结果表明,随着刀具的磨损,各乘积函数分量平均能量增加,并且在高频部分增加显著,该方法可以有效应用在刀具故障诊断中. 相似文献
2.
基于小波变换的滚动轴承故障诊断 总被引:1,自引:0,他引:1
论述了小波变换在目前滚动轴承故障诊断中的重要性和实用性,介绍了小波变换的定义、特点及故障诊断的基本步骤,并通过实例说明了基于小波变换的滚动轴承故障诊断方法是准确可靠的。 相似文献
3.
基于QR分解和提升小波变换的鲁棒音频水印方法 总被引:1,自引:0,他引:1
利用QR分解的稳定性以及提升小波计算速度快的优良特性,给出一种基于QR分解和提升小波变换的盲鲁棒数字音频水印方法.为了保护原始二值水印图像的安全,利用混沌序列对其进行扩频,生成了待嵌入的水印信号.将原始宿主音频信号升维后进行QR分解,根据R分量是上三角矩阵且第一行为非零元素的特点,选定R分量的第一行,对其进行提升小波变换,得到了待嵌入的小波系数,利用线性瞬时混合模型将其与待嵌入的水印信号进行混合,得到隐秘音频信号.水印提取时,利用独立分量分析算法从待检测的隐秘音频信号中提取嵌入水印信号,获得嵌入水印信号的估计,经过后处理即可获得水印图像.实验结果表明,该方法可以实现水印的盲提取,并且具有良好的透明性和鲁棒性. 相似文献
4.
针对如何从非线性、多分量、强背景噪声的滚动轴承早期故障振动信号中有效提取出微弱故障特征并准确判断故障类型,提出基于非局部均值去噪和快速谱相关的故障诊断方法.首先利用非局部均值去噪算法对原始振动信号进行降噪预处理,提高信号信噪比.然后,对降噪信号进行快速谱相关分析,增强信号中的周期成分,获得快速谱相关谱及其对应的增强包络... 相似文献
5.
基于Hilbert变换的滚动轴承内环和外环故障诊断 总被引:3,自引:0,他引:3
针对滚动轴承的外环和内环发生故障时轴承产生的振动信号具有调制的特点,提出基于Hilbert变换的滚动轴承内、外环故障诊断方法,介绍基于Hilbert变换的调制信号解调过程:运用Hilbert变换对滚动轴承的振动信号进行包络解调,实现载波和调制波的分离.通过对调制波进行频谱分析实现滚动轴承内、外环故障的诊断,对具有内环故障和外环故障的滚动轴承进行故障诊断仿真.仿真结果表明:基于Hilbert变换的包络解调技术能有效提取调制信号中的包络信号,对包络信号进行频谱分析后可以实现滚动轴承内、外环故障的诊断;诊断结果与实际故障相吻合,基于Hilbert变换的包络解调技术可应用于滚动轴承内、外环故障的诊断. 相似文献
6.
针对轴承故障振动信号的非线性、非平稳性的特点,而且故障信号经常被各种噪声、干扰所淹没,提出了一种基于局部均值分解(local mean decomposition,LMD)与自适应多结构元素多尺寸差值形态滤波器相结合的方法。原始故障信号先经过局部均值分解得到若干乘积函数(product function,PF)分量,然后采用峭度值准则,选取峭度值最大的PF分量,再将其经过自适应多结构元素多尺寸差值形态滤波器进行滤波解调,最后解调结果进行频谱分析,提取故障特征。为了体现其可行性和优越性,与包络解调、LMD-形态闭运算和LMD-形态差值滤波三种方法进行了比较,仿真信号和实测轴承故障信号的分析结果表明,它具有更强的噪声抑制和脉冲提取能力,可以有效地提取滚动轴承故障特征信息,实现故障的精确诊断。 相似文献
7.
针对一类具有网络时延和范数有界未知输入影响的不确定网络控制系统,研究了基于观测器的鲁棒H∞故障诊断方法.基于Lyapunov稳定性条件和线性矩阵不等式技术,得到了使系统渐近稳定的H∞性能判据,该准则的条件与网络诱导时延相关,在此性能准则的基础上可以进行长时延网络控制系统鲁棒H∞故障诊断滤波器的设计. 相似文献
8.
小波变换与滚动轴承振动的故障诊断方法研究 总被引:1,自引:0,他引:1
简要综合介绍了滚动轴承振动及故障诊断的方法及小波变换在滚动轴承故障特征提取中的应用.通过对滚动轴承故障信号的分析表明,该方法可以分析出滚动轴承振动的故障信号,确定轴承振动的故障部位. 相似文献
9.
滚动轴承振动信号具有非线性、非平稳性,轴承故障发展具有渐变模糊性。因此,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)和模糊C均值聚类(Fuzzy C-means Clustering,FCM)相结合的轴承故障诊断方法。应用此方法对轴承外圈故障、内圈故障以及滚动体故障进行诊断,结果表明该方法可以有效地对轴承故障类型进行识别。 相似文献
10.
为了研究滚动轴承信号的非平稳特征,应用时频分析技术是一种较好的选择.研究了S变换,该方法是将短时傅里叶变换同小波变换结合起来发展的一种新算法.对多种时频分析方法进行了比较,得出S变换优于其他方法的一些特点,提出基于S变换的滚动轴承信号瞬态特征检测方法.结果表明,S变换能够以较高时频分辨率表示轴承振动中的非平稳特征,能反映出信号时频谱真实的物理意义,并且计算速度快.诊断结果验证了该方法可以用于滚动轴承的故障诊断. 相似文献
11.
基于小波包分解的滚动轴承故障诊断 总被引:1,自引:1,他引:0
提出了一种基于小波包分析的滚动轴承故障诊断方法用于实现滚动轴承早期故障的检测.该方法的诊断过程如下:对轴承原始振动信号进行频谱分析,获取振动信号能量集中的频段.根据频段的范围和振动信号的采样频率确定小波包分解的层数.采用小波包分解的方法提取滚动轴承振动信号中能量集中的频段并生成相应的重构信号,对重构后的振动信号进行Hilbert变换和二次频谱分析.通过对比轴承故障的特征频率和二次频谱中的特征谱线判断轴承是否有故障及其发生位置.运用上述方法对具有外环故障的滚动轴承进行了实验研究并成功地实现了滚动轴承外环故障的检测.实验结果表明基于小波包分析的诊断方法可以有效诊断出滚动轴承的早期故障. 相似文献
12.
机车故障诊断的局域均值分解解调方法 总被引:4,自引:0,他引:4
为了有效地识别机车走行部的早期故障,提高我国重载机车的运输能力,提出了一种针对机车故障振动信号的局域均值分解(LMD)解调诊断方法.LMD能够将多分量的调制信号自适应地分解成一系列乘积函数分量,分解与解调过程可同步完成.与Hilbert-Huang变换相比,LMD方法不需要通过Hilbert变换求解瞬时频率,从而避免了Hilbert变换加窗效应所带来的解调误差.由于不受Bedrosian和Nuttall定理的限制,不会出现负频率现象,通过滑动平均方法得到信号的局域均值和包络,因此不存在过包络、欠包络和断点效应.通过对实际机车走行部轴承和齿轮振动信号的分析,成功地提取了故障特征,与经验模式分解进行比较的结果说明,采用LMD方法提取尽可能多的有意义的调制分量,不仅避免了Hilbert变换加窗效应所带来的解调误差,而且更适合于多分量调制信号的处理. 相似文献
13.
针对人为加工的滚动轴承点蚀故障数据难以模拟真实疲劳失效过程的问题,提出将滚动轴承强化寿命试验的轴承疲劳失效过程数据作为故障诊断数据,结合经验模态分解(Em-piricalMode Decomposition,EMD)与共振解调技术对真实疲劳失效的滚动轴承进行故障诊断.依托经验模态分解的自适应性,有效的将携带故障信息的高频调制信号从原信号中分离出来,实现了信号的带通滤波;利用H ilbert变换进行解调分析得到包含故障特征信息的低频包络信号,经过频谱分析后实现对疲劳失效滚动轴承故障特征提取和故障辨识.实验结果表明:该方法能诊断真实情况的滚动轴承疲劳失效故障. 相似文献
14.
针对故障状态下的滚动轴承振动信号非线性非平稳性强、噪声干扰大导致的故障敏感特征提取难的问题,在对轴承振动信号进行局域均值分解(local mean decomposition, LMD)的基础上,提出了一种基于故障敏感分量的特征提取与改进K近邻分类器(K-nearest neighbor classifier, KNNC)的故障状态辨识方法。该方法采用相关系数法对LMD分解出的振动分量进行故障敏感性的量化表征,然后对筛选出的信号分量进行时域/频域的特征提取,构建不同故障状态下的特征样本集。为加快故障状态识别速度,排除不良样本的影响,提出一种基于二分K均值聚类的改进KNNC算法,精简了大容量的训练样本,有效去除不良特征样本和干扰点。实验结果表明,以敏感分量特征作为输入的改进KNNC算法能够快速准确地识别轴承不同故障状态。 相似文献
15.
变速工况下的机械故障诊断逐渐成为旋转机械监控领域的一个热门课题,在变转速下故障更容易发生且伴随更大的噪声,而相应的降噪问题目前却没有可靠的解决方法。因此提出一种基于分数阶傅里叶变换(FrFT)滤波和最小均方算法(LMS)降噪的故障诊断方法,对变转速工况下轴承振动信号进行降噪,进而提取非平稳故障特征。首先,同时获得滚动轴承振动加速度信号和转速信号;然后对Hilbert解调后的振动信号进行峰值搜索FrFT,按照搜索得到的最佳阶次和分数阶域聚集位置进行FrFT滤波;再将FrFT滤波得到的信号作为参考信号,原包络信号作为输入信号,进行LMS自适应降噪;最后对降噪后的信号按照转速重采样进行阶次分析,将包络阶次谱中的突出特征与故障特征阶次对比,判断故障。该方法可成功应用于变转速工况下滚动轴承的试验数据处理,证明了方法的有效性。 相似文献
16.
针对强背景噪声下非高斯脉冲噪声和高斯噪声对滚动轴承故障诊断产生严重干扰的问题,提出了一种基于改进变分模态分解(variational mode decomposition, VMD)并与循环相关熵谱(cyclic correntropy spectrum, CCES)相结合的故障诊断方法。首先,针对VMD传统重构指标易受噪声影响的问题,引入相关熵峭度(correlation entropy kurtosis index, CEK)指标对VMD分解后的模态分量进行选择与重构,去除高斯噪声;然后针对重构后信号仍存在的脉冲噪声影响问题,对重构信号进行CCES投影融合去除非高斯脉冲噪声干扰并增强特征;最后对融合结果进行分析与故障诊断。经仿真测试与实验表明,所提出的方法可以在高斯噪声和非高斯脉冲噪声背景下有效提取滚动轴承故障特征频率并实现故障诊断。 相似文献
17.
介绍了滚动轴承故障诊断的传统方法和现代方法,如冲击脉冲法、共振调解法、小波分析法等,预测了滚动轴承故障诊断的发展趋势。 相似文献
18.
滚动轴承早期故障振动信号的分离与诊断 总被引:4,自引:0,他引:4
利用希尔伯特变换技术,将含故障的轴承振动信号转化为窄带振动包络信号,然后用包络信号的功率谱和活尔什列谱对轴承故障进行诊断,对5套307轴承的诊断结果表明,这种方法诊断结果准确可靠,方法简便实用,速度快,特别适用于滚动轴承故障的在线监测与诊断。 相似文献