首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
提出了一种采用仿生结构及气动肌肉差压控制方式的机器人手臂,使关节具有了很好的柔顺性。通过理论分析和实验测试给出了一种易于实现的关节刚度比例调节方法。实验结果表明,采用此种刚度比例调节的关节可以有效跟踪方波信号和正弦波信号,控制精度达到了±0.6°,较好地解决了高柔顺关节位置控制精度差的问题。  相似文献   

2.
控制系统是机器人实现运动的关键.通过对所设计的由气动软体致动器驱动的仿青蛙游动软体机器人的机械结构和其仿生游动功能需求的分析,建立气动系统和电气系统,并通过Labview编写上位机软件,采用无线通讯的方式实现对仿青蛙游动软体机器人的远程调控以及数据采集,避免外接线束和管路对仿青蛙游动软体机器人运动的干扰,方便对仿青蛙游动软体机器人运动性能进行测试.经过实验验证,所设计的控制系统性能稳定、工作可靠,完全满足仿青蛙游动软体机器人的功能需求.  相似文献   

3.
开展气动肌纤维静态特性建模与实验研究,综合考虑气动肌纤维端部变形、摩擦力、死区气压等对其静态特性的影响,提出一种气动肌纤维静态特性数学模型.搭建气动肌纤维静态特性实验平台,开展气动肌纤维及气动肌纤维束静态特性等长实验、等张实验及等压实验,对比分析不同规格参数的气动肌纤维及气动肌纤维束的静态特性.基于实验所得的等压特性曲线,提出一种气动肌纤维束实验模型,由大量实验数据辨识获得符合实际情况的气动肌纤维及气动肌纤维束的静态特性数学模型,为气动肌纤维驱动微型仿生机器人的精准控制奠定基础.  相似文献   

4.
现有的沙土移动机器人大多采用刚性结构,在复杂的工作环境中常常会发生打滑、沉陷、翻倒等问题,缺乏良好的环境适应能力.针对该问题设计了一种面向沙土环境的仿弹涂鱼气动软体机器人;基于地面力学理论和软体机器人建模方法,考虑机器人在沙土环境下的约束条件,通过对软肢体与沙土间力学交互特性的分析,建立了软肢体/机器人-沙土交互力学模型,并构建了输入气压与机器人运动特性的关联;通过实验验证了软体机器人-沙土交互力学模型的有效性和准确性.实验结果表明,该软体机器人具有环境适应性强、控制简单、柔顺性高等优点.  相似文献   

5.
现有的沙土移动机器人大多采用刚性结构, 在复杂的工作环境中 常常会发生打滑、沉陷、翻倒等问题, 缺乏良好的环境适应能力. 针对该问题设计了一种面向沙土环境的仿弹涂鱼气动软体机器人; 基于地面力学理论和软体机器人建模方法, 考虑机器人在沙土环境下的约束条件, 通过对软肢体与沙土间力学交互特性的分析, 建立了软肢体/机器人-沙土交互力学模型, 并构建了输入气压与机器人运动特性的关联; 通过实验验证了软体机器人-沙土交互力学模型的有效性和准确性. 实验结果表明, 该软体机器人具有环境适应性强、控制简单、柔顺性高等优点.  相似文献   

6.
针对现有爬管机器人应用范围有限、运动场景单一和多地形运动机器人无法攀爬、空间运动受限等问题,提出一种新颖的具备多地形运动能力的双模块软体机器人,每个软体模块由四气室全向弯曲软体气动驱动器组成.通过建立全向弯曲软体驱动器的弯曲模型,分析了全向弯曲软体驱动器的变化规律;提出了一种新型的旋转运动模式,使该机器人能通过旋转运动模式在多种复杂环境中运动;提出基于脉冲宽度调制(PWM)的步态控制方法,使该机器人能够更加简单快速地实现多地形运动功能,并通过实验验证其可行性.实验结果表明,基于四气室全向弯曲软体驱动器的双模块软体机器人能够沿圆形管道、方形管道及不规则杆状物(人体小臂)进行垂直攀爬运动,爬行速度达到11.7 mm/s,还能在平地、人造草皮、崎岖路面、斜坡等复杂地形进行快速移动,爬行速度达到14.0 mm/s,弥补了现有爬管机器人和多地形运动机器人的不足.该模块化软体机器人能在多种地形下进行稳定快速运动,适应性强,在管道检测和复杂地形探测等方面具有潜在的应用价值.  相似文献   

7.
四足机器人气动人工肌肉驱动的仿生柔性机体动力学分析   总被引:2,自引:0,他引:2  
基于四足生物动态步行时其柔性机体辅助腿机构的运动机理,设计了一种由气动人工肌肉、仿生脊柱、前机体和后机体组成的四足机器人仿生柔性机体.采用几何法分析仿生柔性机体运动学,建立四足机器人转向时仿生柔性机体弯曲角与气动人工肌肉长度变化间的关系,通过控制气动人工肌肉长度以控制机体弯曲.基于浮动坐标法和动量矩定理进行仿生柔性机体刚柔耦合动力学建模,对比分析了不同机体刚度下机体弯曲所需气动人工肌肉驱动力.设计仿生柔性机体弯曲控制实验系统,采用PID控制算法进行机体弯曲实验分析.四足机器人的仿生柔性机体分析,为提高其非结构化环境机动性奠定了基础.  相似文献   

8.
研究将气动人工肌肉驱动器应用于柔索驱动三自由度球面并联机器人机构,介绍了该机器人的运动学模型,提出一种简便的轨迹规划方法,在建立的实验测控系统中,应用含并联机器人的位置逆解和对气动人工肌肉的智能PID控制的位置控制算法,实现对机器人末端的位置控制,通过机器人的位置正解验证了位置控制的控制效果.  相似文献   

9.
近年来,新型机器人技术被广泛应用于管道的维护与检查.为了克服刚性管道机器人的局限性,提高机器人的灵活性,软材料制成的机器人已被开发并用于管道探测.由于管道内部管路分支较多,软体机器人在管道内的转向控制面临较大挑战.针对此问题,设计一种小孔径管道软体机器人,并建立运动学模型,在此基础上提出了机器人在T形弯管中的柔顺转向策略.最后,通过实验验证了转向策略的有效性和准确性.实验结果表明,提出的转向策略能有效提高软体管道机器人在T形弯管中的通过性和智能性.  相似文献   

10.
柔索驱动球关节机器人采用柔索替代连杆作为机器人的传动元件,结合了并联机构和柔索传动的优点. 文中提出了一种新型带有万向球轴承的仿人肩关节并联机器人,它由多支气动人工肌肉驱动,由于万向球驱动机构的引入,机器人可实现空间的三维转动. 介绍了该机器人的机构构型,并对其进行了力学性能分析. 该机器人的运动范围及负重能力达到并超过了人体肩关节性能指标的1/2. 相比其他并联机器人,该设计具有结构简单、旋转范围大、输出力矩大等特点.   相似文献   

11.
为了使机械臂具有较好的位置跟随性和人机交互时的安全性,设计了一款3DOF的轻型柔顺机械臂.采用碳纤维材料实现轻量化,设计了串联弹性驱动器(SEA)实现机械臂结构的柔顺性.建立了3DOF轻型柔顺机械臂的运动学和动力学模型,并求解了工作空间;设计机械臂的位置控制实验,通过MTI位姿传感器来获取机械臂末端位姿,提出了MTI位置误差修正的方法.实验表明:当机械臂处于自由状态时,通过对比机械臂各关节和MTI末端位置的跟随性能,得知1,2,3各关节的位置跟随误差分别为7%,5%,2%,末端X,Y,Z3个方向的最大位置误差分别为19.25%,14.43%,6.4%,证明该机械臂末端具有较好的位置跟随性.  相似文献   

12.
针对三关节仿生机器鱼的位姿控制问题, 首先, 介绍三关节仿生机器鱼的硬件结构及其运动控制系统; 其次, 基于期望位姿建立坐标系, 构建机器鱼的位姿误差模型; 再次, 在串级比例-积分-微分(PID)控制系统的基础上, 提出基于串级PID的仿生机器鱼位姿控制算法; 最后, 在URWPGSim2D仿真平台和多水下机器人协作控制系统平台下分别进行算法仿真实验和实体实验. 实验结果表明: 与时变反馈控制算法相比, 基于串级PID算法的仿真机器鱼到达目标位姿所用时间增加, 但位置误差和方向角误差减小, 位姿控制的精度提高; 仿生机器鱼到达期望位姿所用时间为14.4 s, 位姿误差为(-3像素,-4像素,0.062 rad), 基本满足循迹和搬运等应用要求, 验证了算法的有效性.  相似文献   

13.
本文应用滑模变结构理论,设计了一种应用于弹性手臂伺服系统的控制方法——四段式滑模加PI 复合控制方法.在电机最大力矩和速度受到限止情况下,通过滑模开关曲线选择,实现了响应时间最优.同时,为了消除系统的“颤抖”,当系统位置误度小于一定值时,用PI 控制代替滑模控制.实验结果表明,应用这种控制方法,系统的鲁棒性、响应时间和静态精度都有所提高.  相似文献   

14.
多臂抓取工件的受力分析   总被引:1,自引:0,他引:1  
基于机械臂与工件的硬点和软指两种接触方式,对工件的受力进行分析,建立臂与工件保持接触应满足的约束条件;通过臂动力学方程和关节广义驱动力约束,给出多臂协调抓持力不等式约束,并对抓持力的分配进行初步讨论。  相似文献   

15.
针对外敷跟踪器下皮肤组织滑移(Soft Tissue Artifact,STA)引起的人体运动跟踪中上臂轴旋转角位移跟踪误差问题,基于关节自由度约束,提出一种利用相连肢体相对位姿矩阵分解的在线STA误差补偿角度计算方法.首先,利用一组不包含上臂轴旋转的上肢运动轨迹跟踪信息,基于关节点位置连续和旋转自由度约束,通过优化方法计算各肢体分段坐标系到相应跟踪器坐标系的位姿变换矩阵;然后,上肢实时运动跟踪时,对上臂和小臂相对姿态矩阵引入上臂轴旋转STA误差补偿运动,在肘关节两旋转自由度的基础上进行3自由度的旋转矩阵分解,得到STA误差补偿角度.4人上肢运动跟踪实验表明:在不同肘关节内曲角度条件下,均能有效在线修正上臂轴旋转STA跟踪误差,且在旋转角度较大时,补偿精度优于线性STA误差补偿方法.  相似文献   

16.
This paper described the structure of a flexible miniature robotic system which can move in human cavities, and then analyzed the characteristics of the robotic system in detail. The mobile mechanism of the miniature robotic system is soft; it makes inchworm-like movement driven by a 3-DOF pneumatic rubber actuator and holds its positions by air chambers. The driving characteristic models in axial and bending directions of the actuator were set up and the kinemics equations of the robotic system were set up. Experiments had been done through an electro-pressure control system, by which the pneumatic robotic system can be controlled with high accuracy. It is suitable for moving in human cavities for medical inspection.  相似文献   

17.
气液联控伺服系统的工作性能分析及试验研究   总被引:2,自引:1,他引:2  
为从根本上克服常规气压伺服系统的缺点,将液体介质引入到气压伺服系统中,并对气、液进行闭环控制,从而构成了一种气、液复合介质控制系统——气液联控伺服系统.系统应用高速开关阀,用脉宽调制(PWM)的方法进行控制.采用单神经元自适应控制器,根据所建立的状态方程进行了系统的控制仿真,并进行了典型信号的跟踪试验.仿真和试验结果表明,气液联控伺服系统的正弦信号跟踪能力、低速性能均高于常规气压伺服系统,系统可实现无超调定位,且具有较高的位置刚度和精度.  相似文献   

18.
针对一种气动人工肌肉驱动的弹簧质量位置控制系统,设计了一个带有自适应模糊小脑模型(Cerebellar Model Articulation Controller,CMAC)在线逼近的离散趋近律滑模混合控制器.该混合控制器中离散趋近律滑模策略产生控制器的输出;自适应模糊CMAC用以逼近气动人工肌肉系统中的不确定项.CMAC网络权值的在线学习调整保证了自适应模糊CMAC的逼近性能.对离散抗饱和PID控制器(DASPID)与自适应模糊CMAC离散滑模混合控制器(HybridC)的位置跟踪控制性能进行了对比实验.实验结果表明,HybridC较之DASPID有更好的位置跟踪控制性能.当期望参考输入为正弦信号时,DASPID的最大位置跟踪误差为±15 mm;而HybridC的最大位置跟踪误差仅为±07 mm,平均位置跟踪误差大约仅为±02 mm.并且,离散滑模所固有的抖振现象得到了有效的抑制.  相似文献   

19.
为研究伪码多径误差对载波多径误差的影响,文中分析了采用非相干早码减晚码功率型伪码跟踪环时Costas载波跟踪环的载波多径误差,并建立了单一多径下的载波多径误差模型. 所建立的模型表明伪码多径误差对载波多径误差的影响可以表示为多径参数和相关间距对载波多径误差的影响. 理论和仿真分析结果表明,单一多径下载波平均跟踪误差为0,且当相关间距小于一个码片时,载波跟踪误差最大值小于π/2;多径参数对载波跟踪误差的影响较大,而相关间距对载波跟踪误差的影响较小.   相似文献   

20.
针对用ER20-1700机械臂实现运动控制,提出了一种有效的控制方法;首先对ER20-1700机器人的三维建模进行运动学分析建立DH参数表算出机器人的逆解,再把SolidWorks中的三维模型用插件导入Simulink中快速搭建机械控制模型,然后搭建并改良电机驱动物理模型,补全整个控制模型,实现机械臂Simscape正逆解仿真;把算好的逆解用编程的方式写入MATLAB中用robotics tool中进行仿真模拟,并将其与Simulink中的仿真结果进行对比;通过编写函数程序在MATLAB中实现机械臂走直线和画圆的轨迹规划;通过搭建实验平台,使用dSPACE作为控制器把之前的控制模型转化为代码导入其中以实现机械臂的快速控制,控制机器人做直线和画圆运动,记录轨迹规划和实际机械臂所走的数据导入MATLAB绘制成图;实验结果表明:走直线和走圆时,最大跟踪误差小于3 mm,控制方法可行有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号