首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
采用不同热输入对12mm SS400超细晶钢进行焊接,并对焊接接头过热区、正火区及不完全正火区晶粒长大程度与组织变化情况进行分析.结合有限元数值模拟的方法研究焊接热影响区及各子区宽度、组织、硬度随热输入的变化规律,得出焊接热输入与HAZ宽度关系曲线符合Boltzmann平衡态理论.试验结果表明,热输入为9.6~22kJ/cm进行焊接时,HAZ及各子区宽度变化较小;当热输入大于22kJ/cm时,HAZ宽度随热输入的增加而增加,尤其正火区宽度大幅增长.同时,过热区组织随着热输入增加片状贝氏体减少,逐步形成粗大的魏氏组织.接头硬度峰值逐渐升高,局部软化区逐渐扩大.在大热输入焊接时,焊接预热可有效抑制热影响区宽度发展.  相似文献   

2.
研究了不同热输入445J2超纯铁素体不锈钢TIG焊焊接工艺。设计三组热输入分别为低热输入(1.67J/mm),中热输入(1.75J/mm)和高热输入(1.95J/mm),系统地分析了接头组织和力学性能。结果表明:接头焊缝均由中心等轴晶和外围柱状晶组成,HAZ均为粗化的等轴晶;低热输入接头的静载拉伸强度最高;拉伸试样断裂位置均位于接头柱状晶区;随着热输入的增大,拉伸断裂机理由韧窝断裂向准解理转变;对弥散分布的第二相SEM和EDS分析,其成分为Ti或Nb的氮化物,有利于焊缝中心柱状晶向等轴晶的转变。  相似文献   

3.
探讨了ME20M变形镁合金TIG焊工艺参数的选择,采用金相显微镜、拉伸试验机以及扫描电子显微镜等表征方法对焊接接头的微观组织、力学性能以及断口形貌等进行了分析.结果发现,焊接电流为80 A时,焊接接头成形较好,焊缝区组织呈细小的等轴晶,热影响区组织较粗大;焊缝区的硬度由于晶粒细化的原因而有所提高,在热影响区则有所下降;拉伸试验表明焊接接头的力学性能低于母材的力学性能,接头抗拉强度约为母材抗拉强度的75%左右.拉伸断口扫描形貌分析表明,断口呈韧-脆混合断裂.  相似文献   

4.
针对6061-T4铝合金搅拌摩擦焊T型接头力学性能开展了实验研究,首先通过显微观测分析了T型接头的缺陷特征,随后进行了沿蒙皮板方向和沿支撑板方向的宏观拉伸实验,利用数字图像相关(DIC)方法研究了接头的拉伸断裂行为.实验结果表明,焊接接头中均存在弱连接缺陷,且弱连接缺陷是导致接头沿筋板断裂的主要原因.沿蒙皮板方向拉伸时,接头的强度受焊接参数的影响不大,且其断裂主要是由热影响区(HAZ)材料软化且两侧材料强度差异较大所引起;沿支撑板方向拉伸时,试件首先在弱连接缺陷处萌生裂纹,裂纹在载荷作用下沿弱连接所在的方向扩展,并在试件另一侧靠近筋板处产生明显的应力集中区域,最终试件发生剪切断裂失效.此外,接头沿筋板方向抗拉强度随焊接转速的增加有增大趋势.  相似文献   

5.
熔焊伴随的高热输入极易引起热影响区(Heat Affected Zone, HAZ)组织的粗化和脆化,尤其是在临界粗晶热影响区(Inter-critically Coarse-grained HAZ, ICCGHAZ),严重削弱接头韧性。本研究中,在预热条件下对11 mm厚的管线钢板进行双面搅拌摩擦焊接(Friction Stir Welding, FSW),并与双面熔化极气保护焊接(Gas Metal Arc Welding, GMAW)接头进行比较,系统地研究了焊接接头中各亚区组织与韧性之间的关系。与GMAW接头相比,FSW接头ICCGHAZ韧性显著改善。通常,由于高的峰值温度和变形抗力,FSW管线钢接头焊核区(Nugget Zone, NZ)组织比较粗大。然而,在本研究中,第一道次NZ(NZ1)在进行第二道次FSW时被重新加热,由于发生铁素体静态再结晶,NZ1组织明显细化。在整个FSW接头中,NZ韧性最佳,达到母材的112%。这归因于NZ1中细小的铁素体晶粒可以有效阻碍裂纹的萌生和偏转。  相似文献   

6.
通过对304及430不锈钢热轧板材焊接接头热影响区(HAZ)的金相观察、无损检测、显微硬度测定、力学性能和晶间腐蚀性能试验,研究经手工钨极氩弧焊(TIG)的304及430热轧板材的HAZ组织及性能,并进行对比分析.结果表明,采用TIG焊接方法和较小的焊接规范,304焊接接头的热影响区奥氏体晶粒较细(7.5~8.0级),显微硬度为376 HV,焊缝与母材熔合良好;430焊接接头的热影响区铁素体晶粒明显长大(约为4.5级),粗晶粒区宽度约为0.7 mm,碳化物析出不多;热影响区的晶界部位受焊接热循环影响发生了α→γ→M相变,生成的M质量分数约占14%;304和430焊接接头的力学性能良好,拉伸断裂部位是焊缝和热影响区;EPR法测定表明,304及430母材和热影响区均没有产生晶间腐蚀.  相似文献   

7.
研究了光束钎焊获得的对接和搭接钎焊接头的力学性能及其在拉伸载荷作用下的变形行为。光束钎焊对接接头的断裂强度σb、相对延伸率δ、断面收缩率ψ均低于被钎焊母材。同质接头的弹性极限σ0.01、屈服极限σ0.2与母材相当,而异质接头的σ0.01、σ0.2值仅取决于低屈服极限的母材,与高屈服极限的母材无关。对接接头在拉伸载荷作用下的变形是非均匀的,同质接头中的钎缝和近缝区的塑性变形量最小,而异质接头中屈服极限较高的母材一侧几乎无塑性变形。搭接接头在拉伸载荷作用下下会产生“折弯效应”,折弯程度随被钎焊母材屈服极限的增加而减小。对接接头的断裂是由纯拉应力导致的,而搭接接头的断裂是剪应力和拉应力综合作用的结果。  相似文献   

8.
采用阀门用钢A105为试验材料,机械振动焊接与常规埋弧自动焊相结合的对比试验方法,通过残余应力的测试结果可见,振动焊接消除了熔合线附近的应力峰,应力幅值低、分布平缓.从断裂力学的角度分析机械振动对焊接接头韧度的影响,结果表明:焊缝的断裂韧度明显大于热影响区(HAZ);振动焊接工艺下焊缝和HAZ的CTOD(Crack tip opening displacement)值明显高于常规焊接下焊缝和HAZ的CTOD值;且振动焊接使得焊接接头的各部分之间断裂韧度的差别明显缩小,断裂韧度更趋均匀化.经断口的扫描电镜观察可知:振动焊接下焊缝的韧窝密度明显大于常规焊接下焊缝的韧窝密度,且HAZ为整个焊接接头的薄弱环节.  相似文献   

9.
为提高汽车车身用双相钢(DP钢)激光焊接构件在动态载荷下应用的可靠性,研究焊接速度对1.4 mm厚DP780钢脉冲激光焊接接头组织和不同应变速率下拉伸性能的影响规律.结果表明,不同激光焊接速度下DP780钢接头均存在熔合区硬化和外侧热影响区软化现象,随焊接速度增加,接头的软化程度降低.接头的强度随应变速率增加而增加,抗拉强度和断裂延伸率随焊接速度增加呈先增加后减少的趋势.当焊接速度为400 mm/min时,接头表面成形性好、熔深和熔宽适中、无焊接缺陷、外侧热影响区软化程度最低(软化率为9%),熔合区硬度适中,接头整体强度和塑性指标达到最佳值.  相似文献   

10.
针对DP980双相高强钢激光拼焊接头进行动态拉伸实验,对比分析不同应变速率下接头的力学性能和变形规律.结果表明:接头热影响区存在明显马氏体回火软化,接头抗拉强度与母材相当,屈服强度稍高于母材,但断后延伸率降低50%左右.在1×10~(-3)~1×10~3 s~(-1)应变速率范围,接头强度随应变速率增加而增大,断后延伸率呈先上升后下降趋势;在1×10~(-3)~1×10~1 s~(-1)应变速率范围,接头拉伸断裂位置位于热影响区外边缘;在1×10~2~1×10~3 s~(-1)高应变速率范围,断口位于软化区,接头不同分区组织性能差异是主要原因.  相似文献   

11.
利用六轴焊接机器人夹持氩弧焊枪进行AZ31镁合金自动氩弧焊接工艺研究,焊后利用金相显微镜、扫描电子显微镜、X射线衍射仪和万能试验机等对焊接接头进行微观组织表征及力学性能测试。结果表明,在焊接电流160 A、焊接速度0.45 m/min、填丝速度0.6 m/min、钨极针与板材距离0.5 mm(前半段)和2.0 mm(后半段)以及保护气体流量16 L/min(正面)和21 L/min(背面)的条件下,能得到外观形貌良好、质量可靠的AZ31镁合金焊接接头。焊接接头的金相组织显示,焊缝区微观组织可清晰地分为母材区,热影响区和熔化区。焊接过程在热影响区和熔化区出现了大量的沉淀相,X射线衍射结果表明,该沉淀相为β Mg17Al12沉淀相。拉伸结果显示,焊接接头的抗拉强度达到了母材的81.02%,在断口观察到了大量的解离面和韧窝的存在,呈现出脆性断裂与韧性断裂相结合的混合断裂特征。  相似文献   

12.
The characteristics of the welding molten pool of AZ91 magnesium alloy were studied and the welding interface model was built using metallographic observation and scanning electorn microscope(SEM) composition analysis.The welding area was divided into heat affected zone(HAZ),liquefaction zone(LZ),rich poly zone(RPZ),sparse zone(SZ) and weld zone(WZ).The analyses of the microstructure and composition of each region show that optimizing the welding process can improve mechanical properties of weld zone.While for LZ,its tensile properties can be strengthened only by improving the composition of the parent metal and the second phase distribution.And the way to improve the tensile properties of LZ,RPZ,and SZ is to give priority to improve the parent metal composition and the second phase distribution,improving welding technology as the complementary method.Furthermore,based on the results above and the analyses of the microstructure and composition of welding cracks,it is found that the tensile fracture is mainly caused by the stress cracking rather than composition crack.  相似文献   

13.
Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175℃ for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.  相似文献   

14.
摩擦焊接头组织与力学性能   总被引:1,自引:0,他引:1  
研究了变形速率对低合金结构钢摩擦焊接头组织与力学性能的影响,结果表明,增大变形速率和延长减速改善了接头区域的硬度分布,焊缝区宽度变窄,热影响软化区不明显,焊缝晶粒细化,使焊缝的韧性得到一定程度的改善,本文对接头各个区域的显微组织进行了分析。  相似文献   

15.
钨极氩弧焊(TIG)为镁合金焊接中最常用的一种焊接方法。本文采用直流钨极氩弧焊对6.0 mm厚AZ31镁合金挤压板材进行了双面焊接实验。采用光学显微镜、扫描电镜、拉伸试验机考察分析了焊接接头显微组织与力学性能。显微组织分析表明,AZ31镁合金直流TIG焊接头由母材、热影响区、焊缝区组成,焊缝组织呈现焊丝熔化后凝固组织;在母材热影响区与焊缝区之间坡口处形成过渡区,晶粒细小,为母材与焊丝的熔合区。采用AZ31焊丝焊接接头平均抗拉强度为241.0 MPa,延伸率为13.8%,分别达到了母材的86.0%和63.6%。焊接接头的断裂均位于热影响区,断口呈现韧脆混合断裂特征。  相似文献   

16.
采用激光填丝焊将厚度为2 mm和3 mm的6061-T6铝合金板材进行搭接叠焊,研究激光功率对接头成形质量的影响,分析了接头的显微组织和力学性能。结果表明,增大激光功率可以有效增加热输入量,焊道逐渐宽化,焊缝熔深增加。进一步分析发现,焊缝中心区和热影响区的析出相均为Mg2Si。硬度试验结果表明,焊缝中心区由于细小等轴晶和析出相的双重作用,硬度远高于母材区与热影响区的。拉伸试验结果表明,接头的抗拉强度随激光功率的增大而升高,激光功率由2.0 kW升高至2.8 kW,抗拉强度升高约39%。  相似文献   

17.
00Cr12Ni不锈钢焊接热影响区的组织及韧性   总被引:1,自引:0,他引:1  
采用Gleeble3800热力模拟试验机模拟了00Cr12Ni不锈钢不同热输入下的焊接热循环.研究了热模拟试样的组织及冲击韧性.实验结果表明,焊接粗晶区晶粒大小和马氏体的体积分数均随热输入的增加而增加;细晶区组织以马氏体为主,有少量的铁素体,晶粒非常细小;焊接粗晶区试样的室温冲击功随热输入的增加而降低;不同热输入下,细晶区模拟试样均具有优良的冲击韧性;粗晶区冲击试样均为脆性断裂,而细晶区冲击试样均为韧性断裂;为得到组织细小、韧性优良的焊接热影响区,应尽量采用小的热输入规范.  相似文献   

18.
高速列车车厢用的铝合金板焊接接头的组织与性能   总被引:3,自引:1,他引:2  
利用光学显微镜和透射电子显微镜研究了国产7020铝合金熔化极惰性气体保护焊(MIG)接头的微观组织结构,并对接头的力学性能进行研究.结果表明,接头的硬度以焊缝中心线为轴呈对称分布,且焊缝中心为接头的最薄弱环节;焊缝区为典型的树枝状晶的铸造组织.在熔合区,焊缝一侧为沿散热方向排列的柱状晶,另一侧为细小的等轴晶组织.热影响区内,仍可见纤维状加工痕迹,部分析出相固溶到基体中;强化相的粗化,是热影响区内出现软化区的主要原因.国产7020铝合金焊接接头强度达到欧洲标准.  相似文献   

19.
The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.  相似文献   

20.
7715D高温钛合金的电子束焊接   总被引:1,自引:0,他引:1  
采用电子束焊接方法研究了7715D高温钛合金的焊接性能。焊接结果表明:焊接接头成形良好,焊接接头抗拉强度达到983MPa,断口部位位于热影响区;焊缝和靠近焊缝的热影响区的显微组织均为典型的网篮状,母材显微组织为块状初生α相和β转变组织构成的双态组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号