首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
应用雷诺涡黏模型、DDPM(density discrete phase model,稠密离散相模型)及颗粒直径Rosin-Rammler分布方法,以黄河含沙水为介质,对一台100LN-7型螺旋离心泵内固液两相流动进行全三维数值模拟,并与基于Mixture混合多项流模型的泵内两相流动数值模拟结果进行对比分析,得到不同粒径和固相体积分数对应的泵过流部件的磨蚀规律及磨蚀强度.结果表明:颗粒混合状态不同会形成不同的粒径分布,混合粒径中平均粒径增大导致叶片进口边及工作面轮缘线附近磨蚀强度增大,平均粒径为1mm时整台泵过流部件磨蚀率达到最大值,平均粒径继续增大磨蚀率反而降低;固相体积分数的增大使整台泵过流部件的磨蚀强度显著提高,叶片背面较其他部位磨蚀强度大;Mixture模型下固相体积分数较高部位与稠密离散相模型下颗粒磨蚀部位相对应,局部区域存在较高体积分数的固相颗粒增加了过流部件表面发生磨蚀的几率,但DDPM模型数值模拟表明只有部分颗粒参与局部区域的塑性磨蚀.  相似文献   

2.
固液搅拌槽内近壁区液相速度研究   总被引:8,自引:1,他引:7  
在直径476mm的固液搅拌槽内,采用自行研制的双电导电极探头对搅拌槽内距壁0.4mm的近壁区液相速度进行了测定。平均固相体积分数φv从10%至54%。实验结果表明:固体颗粒离底悬浮最小液相速度与固液的物理性质有关,而与实验的操作条件无关;液相速度和搅拌转速在近壁上流区成正比关系,而在槽底区不成正比关系;临界均匀悬浮时,近壁上流区液相速度不随固相体积分数变化;悬浮高度处液相速度和操作条件无关等。  相似文献   

3.
采用液固两相流的数值模拟方法,针对卧式双轴搅拌器的均质混合,运用FLUENT软件结合非结构化网格划分、Eulefian多相流模型、RNG k-ε湍流模型及离散相模型,在非稳态条件下数值模拟卧式双轴搅拌槽的速度分布、压力分布、湍流强度及颗粒轨迹线的规律,分析不同工况对均质混合效果的影响,并获得搅拌轴扭矩及流场冲刷磨损率.在此基础上,分析搅拌功率、搅拌效率和叶片冲刷磨损率的变化规律.研究结果表明:搅拌功率随粒径增大而减小,随体积分数的增大而增大,与转速近似线性关系;当转速高时,搅拌效率高,且粒径和颗粒体积分数对搅拌效率影响小;当颗粒体积分数大时,磨损量大;当粒径增大时,磨损率先增大后趋于平稳.  相似文献   

4.
气液固三相流在机械搅拌充气式浮选机内运动的数值模拟   总被引:1,自引:0,他引:1  
针对机械搅拌充气式浮选机内部气液固三相流动比较复杂的情况,对有效容积为165 m3的大型机械搅拌充气式浮选机进行研究.采用Mixture多相流模型、k-ε湍流模型和雷诺时均 N-S方程,对浮选机内部的气液固三相流流动进行三维湍流数值分析.通过对内流场的数值模拟,分析机械搅拌充气式浮选机内部的流动,得出浮选机内部气液固三相的速度、体积分数、湍流强度和迹线等的分布规律.  相似文献   

5.
为研究轴流泵输送含沙水时过流部件的磨损情况,基于ANSYS CFX软件,应用非均相流模型和粒子模型,对轴流泵内固液两相流场进行数值模拟.重点分析了过流部件壁面处固相体积分数分布、固相滑移速度、体积分数分布及滑移速度与过流部件磨损的关系.结果表明:固相颗粒主要集中于叶片头部和叶片工作面,导致了叶片工作面磨损速度大于背面,并以进口头部的磨损破坏最为显著;固相滑移速度方向的不同,造成了叶片头部和叶片表面磨损类型的不同;固相滑移速度大的地方,固相体积分数较大,过流部件的磨损较为严重;在相同固相体积分数下,叶片工作面固相滑移速度大于背面;在叶片表面的同一部位,固相滑移速度均随着固相体积分数和颗粒直径的增大而增大,大颗粒对过流部件的磨损更为严重.  相似文献   

6.
采用雷诺时均N-S方程、RNGk-ε模型和SIMPLE算法,以含沙水为介质,基于代数滑移混合物模型(algebraic slip mixture model,ASME)对一台单级双吸式离心泵内固液两相流动进行全三维不可压缩定常流动数值模拟,其中转子与定子之间耦合方式采用"冻结转子法"实现.通过对比清水及含沙水介质时泵外特性试验数据与数值模拟结果,验证了数值计算方法的可靠性.基于颗粒摩擦和碰撞模型对固相体积分数分别为5%、10%、15%时叶片工作面和背面摩擦磨损强度和碰撞磨损强度进行预测,结果表明:在同一固相体积分数时,从叶片进口至出口碰撞磨损强度逐渐增大,且工作面大于背面,摩擦磨损强度呈现先增大后减小,又逐渐增大的趋势;随着固相体积分数增大,叶片表面碰撞磨损强度和摩擦磨损强度逐渐增大,摩擦磨损强度沿着整个叶片均大于碰撞磨损强度.  相似文献   

7.
为了在一定程度上弥补混砂车搅拌罐半经验设计方法的缺陷,以及指导搅拌罐的放大设计,基于Fluent对混砂车搅拌罐内混合过程进行非定常固液两相流的数值模拟。选用非结构化网格、标准k-ε湍流模型、Euler多相流模型、滑移网格法和SIMPLE算法,分析了搅拌区的流场、搅拌功率、固相颗粒分布规律以及混合时间。研究结果表明:搅拌流场的流动特性是上、下搅拌桨相互作用的结果;如何减小切向速度、增大轴向和径向速度是提高混合效果的关键;搅拌桨所受力矩、搅拌功率与转速的关系符合搅拌桨的常规特性;在本混砂罐搅拌均匀后,仍然有主体循环不能到达的区域,造成局部固相体积分数较低,可以通过增加搅拌罐挡板长度来优化流场;通过监测3个典型的点,获得各点浓度随时间的变化曲线,从而得到混合时间,这对实际工艺中混合时间的预测具有指导作用;数值模拟分析对混砂车搅拌罐的优化设计奠定了基础。  相似文献   

8.
表面熔融粒子结构对超音速火焰喷涂层结合性能的影响   总被引:4,自引:0,他引:4  
探讨了在超音速火焰喷涂(HVOF)过程中所形成的表面金属层熔化而芯部陶瓷相不熔化的表面熔融粒子结构。研究了这种粒子结构对HVOF涂层结合性能的影响规律,发在态颗粒的密度及体积分数与结合强度有直接的对应关系。提出了综合考虑固态粒子密度、体积分数及速度,表征半熔结构状态对涂层结合性能影响的有效固相质量和有效固相动能两个参量。有效固相质量定义为固态粒子密度和其体积分数平方的乘积,有效固相动能定义为有效固相质量与粒子速度平方的乘积。试验结果表明,涂层的结合强度随这两个参量的增加而增加。  相似文献   

9.
在直径为0.34 m的无挡板平底圆筒搅拌槽内,采用PBT和ZHX两种搅拌桨对固相体积分数为20%的玻璃微珠-水固液两相体系的悬浮特性进行试验研究.采用固体激光器和数码相机分别研究了搅拌桨离底间距和桨型,以及偏心搅拌时偏心率对固相颗粒的悬浮状态与悬浮临界转速及功率消耗的影响,得出了无论是同轴搅拌还是偏心搅拌,搅拌槽底部边缘角落区的颗粒都不能沿周向同时悬浮.搅拌桨离底间距较低有利于颗粒的悬浮,所耗功率愈小,在相同工况下固相颗粒的悬浮效果PBT型桨优于ZHX型桨,偏心搅拌时,颗粒悬浮临界转速和功率消耗均较同轴时的大,且随偏心率的增加而增大,因而,对高浓度固液两相体系的悬浮混合不宜采用偏心的搅拌装置操作.  相似文献   

10.
在直径为0.476m的椭圆底搅拌槽内,采用电导率法研究了沸腾态气-液-固三相体系内混合时间特性。主要考察分散相(气体、颗粒)和功耗对混合时间的影响。实验结果表明:沸腾态搅拌槽内,同转速条件下,颗粒体积分数对单位质量功大小影响较小;仅转速高于480r/min范围内,表观气速增加,体系单位质量功略有下降。颗粒临界悬浮转速随颗粒体积分数的增加而增加,但不随表观气速的变化而发生变化。沸腾态气-液-固三相体系内,混合时间随表观气速或颗粒体积分数的升高而延长。  相似文献   

11.
小粒径固液两相流在螺旋离心泵内运动的数值分析   总被引:2,自引:0,他引:2  
针对螺旋离心泵内固液两相流动比较复杂的情况,以黄河含沙水为工作介质,采用改变沙粒粒径和含沙水体积分数的方法,对小粒径颗粒在螺旋离心泵内的流动进行了数值模拟.通过内流场的速度、压力与颗粒分布,分析了粒径大小对泵内固体颗粒运动的影响和进口固相初始体积分数对泵内压力和固相分布的影响,得出压力沿叶轮工作面和背面的分布规律以及固相体积分数沿叶轮轴面、叶片背面和工作面的分布规律,并在此基础上给出了螺旋离心泵内的磨损特性.  相似文献   

12.
对某无机盐工业结晶反应器中的流体流动过程进行了三维数值模拟,采用多重参考系法(MRF)及标准k-ε模型,分析了桨型、转速、桨的安装高度对结晶器流场的影响情况。计算结果表明:速度分布主要集中于内导流筒内部以及内、外导流筒之间的区域,相应地,结晶器被粗略地划分为对反应结晶过程具有不同作用的两个区域——内导流筒内速度较大的循环区和外导流筒外速度较小的沉降区。通过对循环区和沉降区的速度分布比较,认为推进式搅拌桨的流体流场速度云分布均一性要好于其他型式的搅拌桨,其最佳安装高度为3.5~5.7 m。在合适的搅拌速率下,结晶器沉降区的流体流动速率具有均匀向上的特点,可以有效带出部分小粒子,有利于获得大粒度产品。通过流动过程的数值模拟获得详细的流场分布及操作参数,为结晶器结构和操作参数优化提供了理论指导。实践表明:优化后的产品粒度显著提高,产品中大于0.2 mm的粒子从优化前的不足50%提高到优化后的90%以上,干燥产品的天然气消耗从优化前的22 m3/t降低到优化后的15m3/t,节能降耗效果显著。  相似文献   

13.
小流量工况下旋转离心叶轮内部流场PDA测量与分析   总被引:3,自引:1,他引:3  
在小流量工况下,采用PDA技术对一旋转离心叶轮内部的速度场进行了测量与分析,叶轮出口带有无叶扩压器.对流道内不同流面的数据进行了数据采集和统计.实验结果表明,在小流量工况下,沿周向叶轮内的相对速度从吸力面到压力面先减小后又增大,吸力面处的速度大于压力面;沿流动方向,因流道逐渐变宽,相对速度逐渐减小;靠近轮盖侧,流场结构复杂,在流道中部存在低速区;沿轴向,从盖侧至盘侧,相对速度逐渐增大,分布逐渐均匀;叶轮出口吸力面侧存在气流分离现象.  相似文献   

14.
搅拌桨内部三元流动计算   总被引:4,自引:0,他引:4  
对计算叶轮机械内部三元流动的任定准正交面法略加个性后,用于计算搅拌桨内部的流动。计算所得的桨叶排出流的三维速度分布与实验结果大体一致。计算结果表明,不同转速下的桨叶排出流的无因次轴向速度分布是重合的,桨叶直径,叶片安放角,盘面比,轮毂比对桨叶排出流的速度分布的均有影响。  相似文献   

15.
受颗粒体系混合熵的启发,搭建了基于面阵CCD相机的测量装置,通过金字塔分层光流算法与图像法对均值粒径分别为2.6 mm和1.25 mm的球形颗粒所组成的颗粒系统的分选过程开展了一系列测量,计算得到颗粒体系表面流动层的平均速度与倾斜角,得到如下结论:颗粒体系的总体熵可以描述颗粒分选过程中的细微变化;颗粒体系表面流动层的平均速度受倾斜角的影响,两者表现出正比例关系;在混合颗粒的运动状态为连续雪崩的转速范围内,颗粒体系的总体熵、表面流动层平均速度和倾斜角的变化趋势相一致,说明可以借助平均速度和倾斜角来辅助判断颗粒体系的分选程度。  相似文献   

16.
双叶片离心泵内失速现象的三维PIV分析   总被引:3,自引:0,他引:3  
为了揭示双叶片离心泵内失速现象的发生和发展过程,采用三维粒子图像测速(PIV)系统对比转数为134的双叶片离心泵在4个工况下3个截面的流体流动进行了分析.结果表明:随着流体流量的减小,叶片的压力面首先出现流动分离并产生漩涡;当流体流量继续减小时,漩涡堵塞了流道而使流体流动受阻,造成了叶轮流道失速的现象.在最优工况下,叶轮内流体的流态最佳;在0.8倍最优工况下,中间截面发生了流动分离;在0.5倍最优工况下,中间截面的流动分离扩张并产生了失速;在流量减小至0.2倍最优工况的流量之前,前盖板处也出现了失速,而在后盖板处没有发现漩涡.同时,叶轮内流场的轴向速度很不均匀,由流道进口到出口、吸力面到压力面,其轴向速度逐渐减小,并且叶片压力面的负向轴向速度区域随着失速的发展而扩大.  相似文献   

17.
喷动流化床气固流动特性的三维数值模拟   总被引:3,自引:1,他引:2  
采用离散元方法(DEM),在用欧拉方法处理气相场的同时用拉格朗日方法处理离散颗粒场,对喷动流化床煤部分气化炉内的气固流动进行了三维数值模拟.直接跟踪床内每一个离散颗粒,考虑了碰撞力、携带力、重力、剪切提升力和Magnus升力,颗粒碰撞采用软球模型.获得了喷动流化床典型操作参数下的流动结构、颗粒的受力、颗粒的速度分布、气体和颗粒的湍流强度等结果.结果表明,颗粒之间碰撞率随着喷动气速的增大而增大,随粒径的增大而减小,然而颗粒与壁面的碰撞率受喷动气速和粒径的影响不明显.颗粒的运动受重力、携带力和碰撞力主导,除喷动区与环形区交界外,Magnus力和Saffman力可以忽略.气体湍流强度是颗粒湍流强度的2~3倍,近壁面区的气体和颗粒的湍流强度均较小.  相似文献   

18.
利用计算流体力学的方法,采用Laminar层流模型对双层六直斜叶交替组合桨在甘油与水的混合物中进行中心及偏心搅拌的三维流场进行数值计算,得到了组合桨以恒转速200r/min在搅拌槽内转动时所产生的3种不同流场结构,对比分析了速度矢量图、速度云图以及轴向、径向和周向速度分布曲线,为层流搅拌槽的设计和实际应用提供了依据。  相似文献   

19.
浸没循环撞击流反应器的流场数值模拟   总被引:7,自引:1,他引:6  
利用通用有限元分析软件ANSYS中的计算流体动力学模块(FLOTRANCFD),对浸没循环撞击流反应器(简称SCISR)的流场进行了模拟和分析·计算结果表明,SCISR流场中各参数关于撞击面完全对称;导流筒上下两侧及撞击区内仍然有死区存在,可以通过增加雷诺数来减小·在撞击区内速度等值线比较密集,即这个区速度梯度比较大,这对于促进湍动混合非常有利·最后,应用计算机压力采集装置对流场进行了压力测试,并与模拟结果进行了比较·  相似文献   

20.
利用高速摄像技术对过渡流搅拌槽内单颗粒的运动特性进行捕捉,分析了搅拌雷诺数及桨叶离底高度对颗粒悬浮运动的影响规律,并使用二维粒子图像测速技术得到搅拌槽内的流场信息。研究结果表明:颗粒的临界悬浮转速随桨叶离底高度的降低而降低;桨叶离底高度对颗粒在槽底的运动影响较大;颗粒在垂直离底悬浮后,于桨盘下方附近螺旋上升或作持续的螺旋状圆周运动;搅拌雷诺数升高对颗粒垂直上升的最大高度和最大速度影响较小,但会减小垂直上升过程中桨盘的转动圈数;颗粒螺旋上升是由于轴向流场在颗粒停滞位置向两侧产生了分叉;颗粒的悬浮主要是由流体的主体流动引起的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号