首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
基于改进粒子群的盲源分离算法研究   总被引:1,自引:0,他引:1  
席志红  边峦剑  晋野 《应用科技》2010,37(1):12-14,22
简要地介绍了盲源分离的基本理论,针对独立分量分析传统的优化算法易于陷入局部最优、收敛精度低的缺点,提出了一种基于改进型粒子群的盲源分离算法,将独立分量分析算法与改进的粒子群算法相结合,以负熵作为目标函数.采用这种改进的粒子群算法对分离矩阵进行调整使各个信号分量之间独立,完成对瞬时混合信号的盲分离.实验信号的分离仿真结果表明,该算法能够有效地完成混叠信号的分离.同时,在与传统的盲源分离算法进行对比中,体现出了更高的分离精度和稳定的性能.  相似文献   

2.
基于粒子群算法的盲源分离算法   总被引:1,自引:0,他引:1  
简要地介绍了粒子群算法(PSO)及其改进算法和盲源分离算法(BSS),改进的粒子群算法具有并行性、易实现等优点。将改进的粒子群算法与盲源分离算法相结合,提出了基于粒子群算法的盲源分离算法。该算法以混合信号的峰度为目标函数,采用独立分量分析的方法,用改进的粒子群算法代替常规的最陡梯度下降法,对瞬时混合的信号进行盲分离,解决了梯度算法收敛速度慢的问题。实验仿真表明:该算法具有收敛速度快、分离效果好等特点。  相似文献   

3.
基于粒子群算法的盲源信号分离   总被引:1,自引:0,他引:1  
当源信号个数大于2,联合对角化(JADE)算法在盲源信号分离时效果不理想.提出了一种基于粒子群算法(PSO)的盲源信号分离(BSS)算法.该算法利用PSO算法代替JADE算法中的联合对角化操作,以混合信号的峭度为目标函数,采用独立分量分析的方法,对瞬时混合的信号进行了盲分离,理论分析和仿真结果表明了该算法的可行性和有效性.  相似文献   

4.
简要介绍了基于模拟退火思想的粒子群算法的基本原理,并将之应用于盲源分离算法中,以解决基本粒子群算法收敛速度缓慢的问题。用MATLAB仿真表明,基于该改进算法的盲源分离效果良好,具有收敛速度快、性能稳定等特点。  相似文献   

5.
针对基于典型相关分析CCA(Canonical correlation analysis)的盲源分离问题,并且该盲源分离的过程是通过对信号的逐一抽取来完成的。为避免在盲抽取的搜索过程中产生大量的重复运算,将通过构造一个迭代算法来实现典型相关分析CCA的盲源分离。本文采用的迭代算法是基于可行性规则的混合粒子群HPSO(hybrid particle swarm optimization)算法;约束处理是基于可行性规则的约束处理技术,原理简单,处理方便,无需增加额外的参数。通过仿真实验结果表明,该算法能有效的实现典型相关分析CCA的盲源分离。同时,迭代算法相对简单,提高了典型相关分析CCA盲源分离的收敛速度。  相似文献   

6.
针对传统非线性盲源分离(NBSS)算法容易陷入局部最优解从而导致分解精度较低的问题,提出一种基于改进粒子群优化(PSO)的NBSS算法。该方法利用多层感知机(MLP)拟合非线性混合的逆过程,并将分离信号的互信息最小作为优化目标(PSO的适应度),从而实现MLP中参数的优化。然而,标准PSO算法存在粒子早熟从而使待优化问题陷入局部最优解,针对这一问题,对适应度低的一部分粒子进行依概率的杂交和变异,使粒子群体在整个迭代过程中保持多样性,从而有效解决标准PSO算法的粒子早熟问题。仿真和试验结果表明,相比于线性盲源分离算法和基于标准PSO的NBSS算法,提出的算法可以从非线性混合机械信息中提取纯净的独立源信息,并且提高了非线性混合源的分离精度,为机械系统的监测诊断和振动噪声溯源提供科学依据和关键技术。  相似文献   

7.
分组PSO算法将粒子群分成几个小群,每个小群有不同的进化参数且每个小群分别进化,在间隔一定时刻进行组间变异和重组操作,并且在重组的同时对各小组参数进行粒子群优化,相比普通粒子群算法无论在收敛速度还是在精度和操作方便性上都有提高.  相似文献   

8.
欠定盲源分离技术是一个热门的研究领域,其广泛应用于信息理论、神经网络、统计信号处理、生物医学工程等领域。在大多数实际情况下,当接收到由多路源信号叠加而成的观测信号时,源信号的数量大于观测时长,采用通常的盲源分离技术难以恢复源信号。着重讨论基于\"两步法\"的欠定盲源分离问题;该分离技术分两个阶段,第一阶段采用基于粒子群算法的K-均值聚类改进算法求解混合矩阵,将蚁群算法信息素的概念应用其中;第二阶段采用最短路径法求解L1-范数模型获得源信号的估计。相比于现存的二阶段方法,该方法可达到更高的信号重构信噪比。  相似文献   

9.
一种基于ICA的盲源分离定点迭代算法   总被引:1,自引:0,他引:1  
介绍了一种基于ICA的定点速代算法,并给出算法的模型、步骤和仿真结果。该算法以峰度作为独立性判决准则,在迭代过程中,使用定点算法,快速有效地分离出任意分布的非高斯独立源信号。实验表明,与传统的基于随机梯度的ICA算法相比,谊算法具有收敛速度快,无需动态参数的优点,是一种高效可靠的盲信号分离算法。  相似文献   

10.
提出一种有效的基于改进的粒子群算法的盲源分离算法.首先引入进化速度和聚集强度来更新粒子群算法中的动态惯性权重w,然后定义基于改进PSO的独立分量分析算法的适应性函数,最后给出算法的具体步骤.实验结果表明,改进的ICA算法可以快速有效地得到BSS的最优解.  相似文献   

11.
教与学优化算法(teaching-learning-based optimization algorithm,TLBO)是一种基于班级"教师阶段"和"学生阶段"的新型群智能优化算法.针对算法求解高维非线性复杂优化问题时精度较低的缺点,提出一种混合的教与学优化算法(HTLBO).首先,对"教师阶段"中的学生平均水平重新定义,并采用一种自适应策略根据粒子的适应度值对学习因子动态取值;然后,在迭代的过程中,根据适应度值将种群分成两个子种群,对于适应度值好的子种群采用改进的教与学优化算法(ATLBO)更新以增加种群的多样性,对于适应度值差的子种群采用简化粒子群算法(SPSO)以提升子种群的收敛性;最后,通过10个无约束优化问题进行对比测试实验,结果显示,HTLBO在探索性能和收敛速度方面优于TLBO等其他4种类型的算法.  相似文献   

12.
基于自然梯度算法的盲信源分离研究   总被引:6,自引:0,他引:6       下载免费PDF全文
盲信源分离试图从给定的一组混合观察数据中恢复未知的独立信源。文中介绍盲信源分离的一种非常重要的算法——自然梯度算法。对通信信号和自然语音信号采用不同的活动函数进行了盲信源分离的计算机模拟实验,结果显示该算法能够分别有效地分离这两类随机混合的信号。  相似文献   

13.
利用新的图形处理器架构重新评估利用可编程图形处理器加速标准粒子群优化算法的可行性和有效性. 针对新的图形处理器架构进行系统分析, 在此架构下实现了标准粒子群优化算法的并行版本. 实验结果表明, 通过合理运用新的图形处理器架构, 与其他标准粒子群优化算法的并行版本相比, 取得了良好的加速比.  相似文献   

14.
针对非线性机械故障信号分离依赖于非线性函数的选取问题,提出一种基于自适应粒子群优化的机械故障特征提取方法.该方法把观测信号的负熵做为目标函数,通过观测信号的状态自适应地调整惯性因子,有效克服了信号恢复质量和收敛速度间的矛盾.通过对仿真信号的分离,实现了分离输出信号与仿真信号的一致性.最后利用该方法对实测混叠机械振动信号成功实现了故障信号分离,验证了所提方法的有效性.  相似文献   

15.
基于统计估计的盲信号分离算法   总被引:3,自引:0,他引:3  
最大熵法(MaximumEntropy,ME)和最小互信息量法(MinimumMutualInformation,MMI)是两种目前最常用的盲信号分离算法.在分析ME与MMI算法的基础上,提出了一种利用反馈结构的输出信号概率密度函数(pdf)估计的增强ME算法.与传统ME算法相比较,新算法无需给出传统ME算法中神经元非线性函数的具体表达形式,而是直接利用输出信号pdf估计来推导算法的迭代核,进行算法自适应.分析了应用几种不同pdf估计方法的新算法迭代公式.通过计算机模拟表明,新算法比传统ME算法对于解决卷积混合输入的盲信号分离问题时,具有更好的算法性能.  相似文献   

16.
杂系混合信号的盲分离   总被引:1,自引:1,他引:1  
利用基于随机变量概率密度函数的非参数密度估计的核密度估计法对评价函数进行直接估计,改进了盲分离算法的性能,理论推导和试验都证实了这种基于核密度估计的非参数密度估计盲分离算法能实现包含超高斯和亚高斯信号的杂系混合信号的盲分离,为盲分离问题在实际问题中的应用奠定了一定的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号