首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
林火可以改变森林生态系统元素的生态化学计量特征,反映火后森林生态系统环境中生物地球化学循环变化模式,阐明林火干扰下森林生态系统碳(C)氮(N)磷(P)生态化学计量特征,对于理解森林生态系统对林火干扰的响应机理至关重要。笔者通过查阅大量相关文献,总结与分析了林火干扰对森林生态系统C-N-P生态化学计量特征影响模式,以及林火干扰对植物C-N-P生态化学计量特征、凋落物C-N-P生态化学计量特征、土壤C-N-P生态化学计量特征的影响,认为森林生态系统C-N-P生态化学计量特征主要受到火烧因子(火烧强度、火烧频率、火烧后恢复时间)、植被类型及土壤性质3个方面的影响,针对林火对森林生态系统生态化学计量学研究亟待解决的科学问题,从林火干扰对植物生态化学计量内稳性的影响机制、林火干扰下多重元素生态化学计量学研究、建立林火干扰下植物-凋落物-土壤复合系统生态化学计量学关系等3个方面进行了展望,以期深入了解林火干扰下植物调控策略,明确林火干扰后多重化学元素间相互耦合机制,完善以植物-凋落物-土壤为复合整体的地上地下养分输入输出的关系,对于深刻理解全球气候变化背景下森林生态系统养分循环和平衡,以及合理制定林火管理措施具有重要作用。  相似文献   

2.
【目的】森林是三峡库区重要的生态屏障,研究该地区森林生态系统化学计量特征可深入了解生态系统的养分循环、限制作用以及稳定机制。【方法】通过对三峡库区库首森林生态系统的7个站点进行典型取样,研究了包括乔木、灌木和草本30种植物的107个样品叶片中碳(C)、氮(N)和磷(P)的化学计量学特征。【结果】三峡库区库首森林生态系统植物叶片中有机碳(OC)、全氮(TN)和全磷(TP)的含量变化范围分别为352.0~506.3、8.3~48.6和0.5~2.5 mg/g,平均值为450.2、18.6和1.2 mg/g; 叶片C/N、C/P和N/P的变化范围为7.6~56.5、158.8~799.3和7.3~40.2,平均值为28.6、450.4和16.9。不同生活型植物叶片的养分组成存在显著差异,乔木叶片的有机碳含量要明显高于灌木和草本,而草本植物的叶片全氮和全磷的含量要明显高于乔木和灌木; 落叶乔木叶片的全氮、全磷含量及N/P的值要明显高于常绿乔木,但有机碳含量及C/N和C/P的值则相反。不同生活型植物有机碳与全氮(磷)含量的相互关系也存在差异,草本植物叶片有机碳与全氮(磷)含量存在极显著负相关,乔木叶片有机碳与全氮含量呈显著的负相关,但与全磷含量不相关,灌木叶片有机碳与全氮(磷)含量不相关; 不同生活型植物叶片全氮和全磷含量均存在极显著正相关。【结论】三峡库区库首森林生态系统植物叶片有机碳含量处于中等水平,而全氮和全磷含量相对较低,磷缺乏是限制该区植被生产力的关键元素。  相似文献   

3.
中国荒漠植物生态化学计量学特征与驱动因素   总被引:1,自引:0,他引:1  
化学计量学已成为生态学进行定量分析和研究的热点问题之一.通过对1995-2015年生态化学计量学研究成果的分析,对中国干旱半干旱荒漠生态区、高寒荒漠半荒漠生态区的荒漠植物生态化学计量学特征及其驱动因素已有的研究成果进行了系统研究.结果表明:(1)在荒漠生态系统中,N和P是主要的限制性营养元素,不同生活型植物的C、N、P含量均存在显著差异,C、N、P含量在3种生活型的大小顺序为草本灌木乔木;(2)荒漠区主要灌木植物叶片C:N:P化学计量比在整个生长季内的变化规律不同;单个荒漠植物物种叶片C、N含量及C:N的季节变异较小,叶片P含量及C:P和N:P季节变异较大;(3)荒漠植物叶片的生态化学计量学特征会随外界环境的变化而变化,同一生活型的植物也会表现出不同的生态化学计量学特征.该研究以期为维护荒漠生态系统平衡和生态脆弱区生物多样性保护提供理论指导与案例借鉴.  相似文献   

4.
土地利用变化的碳排放机理及效应研究综述   总被引:2,自引:0,他引:2  
就影响陆地生态系统碳储量的主要生态机制(CO2施肥效应、氮沉降增加、污染、全球气候变化、土地利用变化和土地管理),阐述了土地利用变化对陆地生态系统结构和功能产生的影响,以及对系统造成的碳储量变化.主要从土地利用变化和土地管理两方面对土地利用碳排放效应进行论述:森林砍伐后变为农田和草地,使生态系统中植被和土壤碳贮量大大降低;农田和草地弃耕恢复为森林,以及农田保护性管理措施的利用,能够使大气中的碳在植被和土壤中得到汇集;森林恢复过程中植被可以大量汇集大气中的碳,而由于农田耕种历史不同以及土壤空间异质性,导致土壤碳汇集速率差异极大;保护性农田管理措施(诸如免耕、合理的种植制度、化肥的施用等)可以影响土壤理化特性、作物根系生长以及残茬数量和质量、土壤微生物数量和活性,维持和提高土壤碳含量水平.土地利用碳排放核算主要从陆地生态系统的植被碳和土壤碳入手,综述了目前国内外的研究进展.  相似文献   

5.
全球变暖是目前全球变化研究中一个热点问题 ,温室气体被人们认为是造成全球升温的主要原因 ,碳循环不仅是IPCC、IHDP和IGBP中GCTE等一系列国际组织和核心项目的研究内容 ,并且已成为联合国气候变化框架协议、京都会议的一个重要话题。在自然界 ,各种温室气体的交换主要发生在大气、海洋与陆地生态系统之间 ,因此陆地生态系统的碳氮循环一直是人们的研究焦点。一、植被碳库、土壤碳库及其影响因素是陆地生态系统碳循环研究重点陆地生态系统中的碳库形式按生态类型分 ,主要有森林、草原、湿地、耕地等几种 ,其余如冻原和沙漠…  相似文献   

6.
 全球变暖是目前全球变化研究中一个热点问题 ,温室气体被人们认为是造成全球升温的主要原因 ,碳循环不仅是IPCC、IHDP和IGBP中GCTE等一系列国际组织和核心项目的研究内容 ,并且已成为联合国气候变化框架协议、京都会议的一个重要话题。在自然界 ,各种温室气体的交换主要发生在大气、海洋与陆地生态系统之间 ,因此陆地生态系统的碳氮循环一直是人们的研究焦点。一、植被碳库、土壤碳库及其影响因素是陆地生态系统碳循环研究重点陆地生态系统中的碳库形式按生态类型分 ,主要有森林、草原、湿地、耕地等几种 ,其余如冻原和沙漠 ,所占比例很小。  相似文献   

7.
植物与土壤之间相互反馈的格局、过程与机制,不但是决定生态系统结构、功能及过程的关键科学问题,而且是陆地生态系统响应全球变化的重要组成部分。基于目前国内外研究现状,从养分循环角度剖析“植物-土壤”间的反馈效应,探明相互反馈在空间尺度(根面、根际、种类、生态系统以及区域等)与时间尺度(秒至千年)上的级联效应及其变化格局;阐明根际、植物种类、生态系统及区域地理等水平上“植物-土壤”的相互反馈机制,重点揭示根系分泌、共生、生长及代谢的根际界面过程对植物水分/养分吸收与土壤物理学修饰的调控机制,剖析“植物种类-凋落物化学-土壤生物-土壤有机质”相互作用对地上-地下养分循环过程的驱动机制,运用“上行-下行控制理论及腐屑食物网模型”揭示地上-地下生物群落交互作用的过程与机制,以及土壤地质演变(岩石风化模式、土壤形成模式及土壤养分格局的变化)与区域植被演替(优势种更替及植被分布模式、地上-地下凋落物输入格局等的变化)相互反馈的过程与机制;从“植物-土壤”相互反馈的理论视角,分析生态退化与恢复、外来物种生态入侵、大气氮沉降、二氧化碳浓度升高以及植物多样性减少等全球生态问题的特征、形成机制以及可能的应对策略,揭示生态系统“地上-地下”相互反馈的生态学过程,以及陆地生态系统对全球生态环境变化的响应特征与机理。  相似文献   

8.
土壤碳储量研究方法及其影响因素   总被引:4,自引:0,他引:4  
近年来,碳储量问题日益成为全球变化与地球科学研究领域的前沿与热点问题。土壤是陆地生态系统的核心,研究土壤碳储量及其影响因素对正确评价土壤在陆地生态系统碳循环以及全球变化中的作用有重要意义。文章综述了土壤碳储量研究常用的五种统计方法,总结分析了植被、气候、土壤属性以及土地利用方式等多种自然因素和人文因素对土壤碳储量的影响。  相似文献   

9.
结合陆地生物地球化学模型CENTURY,以大兴安岭呼中自然保护区森林生态系统为例,探究大兴安岭生态系统碳循环以及氮磷元素对碳循环的影响.模型模拟达到平衡状态时的植被碳库碳储量为4 874.47g·m-2,在观测值2 430.08~10 001.7g·m-2的范围之内,土壤碳库的平衡值为8 353.42g·m-2,与观测值8 244.23g·m-2差别不大,说明CENTURY模型在研究区域有较好的适用性.但Century模型对营养元素的限制作用模拟过于简单,不能满足动态模拟植物生长状况的要求,因此需要对模型进行改进来达到更好的模拟效果.改进模型中氮磷限制作用产生方案后,模拟的植被碳库、土壤碳库、通量和生态系统碳储量都明显下降.植被碳库受氮磷元素限制作用影响较大,较修改前下降31%以上.土壤碳库中表层(0~10cm)碳库受到的影响程度更大,碳储量约降低33%.氮库在改进限制作用产生方案后,除了表层代谢库有较小的升高趋势外,其余库均呈现出增高趋势;与此相反,土壤磷库则表现出增加趋势,植被磷库表现出降低趋势,综合起来生态系统整体磷库表现出降低趋势,但降低幅度较小,为6%.  相似文献   

10.
为探明广西马尾松Pinus massoniana人工林土壤碳(C)、氮(N)、磷(P)化学计量特征,揭示马尾松人工林土壤养分平衡机理及其时空动态变化,为马尾松人工林可持续经营提供理论依据,研究以广西4个典型区域马尾松人工林为对象,采用空间代替时间的方法,比较不同区域各林龄土壤有机碳(SOC)、全氮(TN)和全磷(TP)...  相似文献   

11.
Nutritional constraints in terrestrial and freshwater food webs   总被引:85,自引:0,他引:85  
Biological and environmental contrasts between aquatic and terrestrial systems have hindered analyses of community and ecosystem structure across Earth's diverse habitats. Ecological stoichiometry provides an integrative approach for such analyses, as all organisms are composed of the same major elements (C, N, P) whose balance affects production, nutrient cycling, and food-web dynamics. Here we show both similarities and differences in the C:N:P ratios of primary producers (autotrophs) and invertebrate primary consumers (herbivores) across habitats. Terrestrial food webs are built on an extremely nutrient-poor autotroph base with C:P and C:N ratios higher than in lake particulate matter, although the N:P ratios are nearly identical. Terrestrial herbivores (insects) and their freshwater counterparts (zooplankton) are nutrient-rich and indistinguishable in C:N:P stoichiometry. In both lakes and terrestrial systems, herbivores should have low growth efficiencies (10-30%) when consuming autotrophs with typical carbon-to-nutrient ratios. These stoichiometric constraints on herbivore growth appear to be qualitatively similar and widespread in both environments.  相似文献   

12.
【目的】了解伊犁河上游典型草地养分限制状况,为不同草地类型群落营养循环及植物-土壤养分管理提供理论依据,也为该区域生态环境的改善提供科学依据。【方法】通过野外调查采样和室内分析测定,采用相关性分析方法,分析了不同类型草地群落植物-土壤氮、磷、钾含量及化学计量学特征。【结果】研究区不同草地类型植物群落植物地上部分和地下部分根系的氮、磷、钾含量变异较大,山地草甸草原和高寒草甸植物地上部分氮含量荒漠草原、半荒漠草原和高寒草甸的氮含量;荒漠草原和半荒漠草原植物地下部分根系的氮含量山地草甸草原、山地草甸和高寒草甸的氮含量;不同草地群落类型植物地上部分的P含量与植物N/P比值呈显著负相关,土壤N与土壤P含量、土壤P含量与土壤N/P比值分别呈显著正相关,土壤N和土壤N/P比值极显著相关,其相关系数为0.983。【结论】研究区土壤氮素缺乏,可以考虑在草地生长过程中适当添加氮肥。  相似文献   

13.
Morford SL  Houlton BZ  Dahlgren RA 《Nature》2011,477(7362):78-81
Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950?mg?N?kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70?mg?N?kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30?cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.  相似文献   

14.
【目的】研究炼山和套种绿肥对桉树人工林林下植物和土壤C、N、P化学计量特征的影响,阐明炼山和套种绿肥条件下桉树人工林林下植物与土壤C、N、P的作用关系。【方法】在凭祥市热带林业实验中心青山试验场测定炼山和套种绿肥(山毛豆)处理下的桉树人工林林下植物与土壤C、N、P生态化学计量特征的变化规律。【结果】桉树人工林林下植物灌上(灌木层地上部分)有机碳、全氮含量最高,全磷含量最低;土壤有机碳和全氮含量随土壤层次的加深而递减,而土壤全磷则呈表层土的含量最高,随后减少再逐渐回升的趋势。炼山处理降低了林下植物中的有机碳、全氮含量,尤其是草上(草本层地上部分)和灌上(P0.05),却提高灌下(灌木层地下部分)的全磷含量(P0.05);炼山降低0~60cm土层的有机碳及全磷含量,降低0~10cm土层的全氮含量,提高10~60cm土层的全氮含量。套种绿肥后,林下植物有机碳含量降低,灌木层的全氮含量提高;显著降低草本层的全磷含量,而显著提高灌上的全磷含量;显著降低0~10cm的土壤有机碳及全磷含量(P0.05),小幅度降低0~10cm、10~20cm土层的全氮含量(P0.05)。炼山+套种绿肥处理,土壤表层0~10cm有机碳和全氮含量显著提高,林下植物草上全氮和全磷含量显著增加(P0.05);与单一的炼山或套种绿肥处理恰好相反。炼山提高林下植物生态化学计量比值,却降低土壤生态化学计量比值;套种绿肥总体上提高林下植物的N∶P和C∶P,降低林下植物的C∶N和土壤生态化学计量比值;炼山+套种绿肥对土壤生态化学计量比影响显著,总体降低林下植物的生态化学计量比,尤其是草上及灌上组分(P0.05)。林下草本和灌木层植物的地上部分与土壤的生态化学计量比呈负相关关系。【结论】炼山和套种绿肥对桉树人工林林下植物与土壤C∶N∶P化学计量特征有显著影响,炼山+套种绿肥比单一处理的方式更有利于提高土壤表层0~10cm有机碳和全氮含量以及林下草本植物地上部分全氮和全磷含量。  相似文献   

15.
湿地生态系统碳氮磷(C、N、P)生态化学计量比已成为当前探索群落生态动态过程的热点.然而,人类活动对沼泽湿地生态化学计量比的影响规律及其影响机制尚未明确.以神农架大九湖沼泽湿地为研究对象,探索植被—土壤碳氮磷生态化学计量比及其对人类活动的响应规律,以期为该区域湿地保护恢复提供决策支撑.研究表明:随着人类活动的影响,与泥...  相似文献   

16.
Phosphorus (P) is generally considered the most common limiting nutrient for productivity of mature tropical lowland forests growing on highly weathered soils. It is often assumed that P limitation also applies to young tropical forests, but nitrogen (N) losses during land-use change may alter the stoichiometric balance of nutrient cycling processes. In the Amazon basin, about 16% of the original forest area has been cleared, and about 30-50% of cleared land is estimated now to be in some stage of secondary forest succession following agricultural abandonment. Here we use forest age chronosequences to demonstrate that young successional forests growing after agricultural abandonment on highly weathered lowland tropical soils exhibit conservative N-cycling properties much like those of N-limited forests on younger soils in temperate latitudes. As secondary succession progresses, N-cycling properties recover and the dominance of a conservative P cycle typical of mature lowland tropical forests re-emerges. These successional shifts in N:P cycling ratios with forest age provide a mechanistic explanation for initially lower and then gradually increasing soil emissions of the greenhouse gas nitrous oxide (N(2)O). The patterns of N and P cycling during secondary forest succession, demonstrated here over decadal timescales, are similar to N- and P-cycling patterns during primary succession as soils age over thousands and millions of years, thus revealing that N availability in terrestrial ecosystems is ephemeral and can be disrupted by either natural or anthropogenic disturbances at several timescales.  相似文献   

17.
Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton   总被引:12,自引:0,他引:12  
Klausmeier CA  Litchman E  Daufresne T  Levin SA 《Nature》2004,429(6988):171-174
Redfield noted the similarity between the average nitrogen-to-phosphorus ratio in plankton (N:P = 16 by atoms) and in deep oceanic waters (N:P = 15; refs 1, 2). He argued that this was neither a coincidence, nor the result of the plankton adapting to the oceanic stoichiometry, but rather that phytoplankton adjust the N:P stoichiometry of the ocean to meet their requirements through nitrogen fixation, an idea supported by recent modelling studies. But what determines the N:P requirements of phytoplankton? Here we use a stoichiometrically explicit model of phytoplankton physiology and resource competition to derive from first principles the optimal phytoplankton stoichiometry under diverse ecological scenarios. Competitive equilibrium favours greater allocation to P-poor resource-acquisition machinery and therefore a higher N:P ratio; exponential growth favours greater allocation to P-rich assembly machinery and therefore a lower N:P ratio. P-limited environments favour slightly less allocation to assembly than N-limited or light-limited environments. The model predicts that optimal N:P ratios will vary from 8.2 to 45.0, depending on the ecological conditions. Our results show that the canonical Redfield N:P ratio of 16 is not a universal biochemical optimum, but instead represents an average of species-specific N:P ratios.  相似文献   

18.
微塑料对高等植物生长发育影响研究进展   总被引:1,自引:0,他引:1  
微塑料污染作为新兴环境问题倍受关注.高等植物作为人类和动物赖以生存不可或缺的重要组成部分,对保持生态系统平衡起着至关重要的作用.微塑料颗粒释放到环境中,不可避免地会与高等植物相互作用.高等植物受微塑料污染后,其生长发育特性受到影响,并将可能影响陆地生态系统及食物链.因此,研究微塑料对高等植物生长发育的影响具有重要意义.目前,虽然已有较多微塑料对高等植物生长发育影响的研究,但还缺乏对已有近期研究成果系统、全面的综述.综述了微塑料对高等植物生长发育影响的研究,总结了微塑料对高等植物影响的主要因素,分析了微塑料对高等植物影响机理及潜在生态风险,并针对微塑料对高等植物的影响及生态效应提出研究展望,为今后微塑料的污染防控提供科学依据.  相似文献   

19.
Hu S  Chapin FS  Firestone MK  Field CB  Chiariello NR 《Nature》2001,409(6817):188-191
Carbon accumulation in the terrestrial biosphere could partially offset the effects of anthropogenic CO2 emissions on atmospheric CO2. The net impact of increased CO2 on the carbon balance of terrestrial ecosystems is unclear, however, because elevated CO2 effects on carbon input to soils and plant use of water and nutrients often have contrasting effects on microbial processes. Here we show suppression of microbial decomposition in an annual grassland after continuous exposure to increased CO2 for five growing seasons. The increased CO2 enhanced plant nitrogen uptake, microbial biomass carbon, and available carbon for microbes. But it reduced available soil nitrogen, exacerbated nitrogen constraints on microbes, and reduced microbial respiration per unit biomass. These results indicate that increased CO2 can alter the interaction between plants and microbes in favour of plant utilization of nitrogen, thereby slowing microbial decomposition and increasing ecosystem carbon accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号