首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 91 毫秒
1.
以钒钛磁铁矿炼铁原料为基础,系统研究了烧结矿中Mg O质量分数对高炉冶炼钒钛磁铁矿综合炉料软熔滴落性能和V,Cr在渣铁中迁移规律的影响,并进行了理论分析.研究表明,随着烧结矿中Mg O质量分数的提高,综合炉料的软化区间t40-t4变宽;熔化区间tD-tS稍有收窄,软熔带变薄且位置略微下移;熔滴性能总特征值S先减小后增大,综合炉料透气性先变好后恶化,在Mg O质量分数为2.98%~3.40%时透气性最好;滴落率逐渐变小;V,Cr在滴落铁中的收得率略有降低;因此,烧结矿中Mg O质量分数在3.40%左右为宜,此时高炉渣中Mg O质量分数约为12%.  相似文献   

2.
试验研究表明,唐钢一铁烧结矿粒度均匀,具有良好的强度和冶金性能;搭配25-40%酸性球团的综合炉料,具有较好的熔滴性能,是合理结构。  相似文献   

3.
中国对钒钛磁铁矿中钒的利用仍然存在着诸多难题,特别是对于低品位的矿石,传统的高炉-转炉工艺更加难以实现对钒的高效提取利用。针对其钒钛磁铁矿的利用问题,开展了新工艺的探索,通过竖炉煤基还原-电炉熔分工艺进行铁钒分离,从而实现钒资源的综合高效利用。实验结果表明,最佳工艺参数为1 050℃条件下竖炉煤基还原11.5h,海绵铁的金属化率为93%,钒的还原率能够控制在3.5%以下;还原过程中加入3%的硼砂添加剂可以明显改善海绵铁的金属化率,使其提高到98.16%;样品中心部位铁的还原程度要优于边缘部位。  相似文献   

4.
以高铬型钒钛磁铁矿和普通磁铁矿精矿混合料为原料,通过烧结杯试验考察了TiO2质量分数对高铬型钒钛磁铁矿烧结矿性能的影响规律.研究结果表明:随着TiO2质量分数从6.30%增加到11.76%,转鼓指数逐渐降低,烧结矿强度降低,垂直烧结速度、成品率和烧结杯利用系数均呈现上升的趋势;直径小于5mm的小粒径烧结矿的比例逐渐降低,粒度有增大的趋势;随着TiO2质量分数的增加,赤铁矿含量降低,磁铁矿含量增加,同时,钙钛矿和Fe9TiO15相也增加.低温还原粉化指数有上升的趋势,相反还原性降低.  相似文献   

5.
分流制粒烧结是一种新的烧结工艺,即将铁精矿分别制成高碱度物料和酸性球,再混入燃料和返矿进行烧结的方法.针对碱度进行了实验室研究,以确定新的工艺参数.结果表明:碱度较低时,烧结矿黏结相以硅酸二钙和玻璃质为主,烧结矿质量较好;随着碱度升高,钙钛矿含量增加,对烧结矿冶金性能破坏性很大.TiO2完全生成钙钛矿后,碱度达到2.02时,铁酸钙含量增加很多,烧结矿液相遮盖了球团矿,烧结矿产量提高,冶金性能得到改善.  相似文献   

6.
钒钛磁铁矿的利用现状及其使用价值   总被引:2,自引:0,他引:2  
  相似文献   

7.
在实验室内研究了钒钛磁铁矿在铁浴式熔态还原过程中还原速度变化的多峰特性机理,分析了钒钛磁铁矿的结构和熔态渣相结构的变化规律,钒钛磁铁矿熔态还原过程的动力学特征及影响因素。  相似文献   

8.
在高铬型钒钛磁铁矿基础特性研究的基础上,进行了配矿优化和烧结杯试验,并对烧结产物进行显微分析.结果表明,该矿烧结基本特性差,随着配比的提高,垂直烧结速度和产品转鼓指数下降,成品率和利用系数先升后降.另外,显微结构分析表明,高铬型钒钛烧结矿矿物组成主要有磁铁矿、赤铁矿、钙钛矿、铁酸钙、硅酸二钙和玻璃质.随着该矿配比的提高,烧结矿中铁酸钙、硅酸二钙含量降低,钙钛矿及玻璃相含量增加,液相量不足.因此,在实际生产中,该矿配比宜控制在10%~20%之间.  相似文献   

9.
模拟研究了不同富氧率条件下钛磁铁矿氧化球团的还原过程.通过扫描电镜观察钒钛磁铁矿球团还原过程中的微观结构变化,结合能谱仪研究分析了还原过程中产物的分布变化.结果表明,富氧率的提高对还原度和还原速率提高有明显促进作用.还原过程中钛铁分离伴随着Al元素向高钛矿中迁移富集,最终Al与Ti原子数比为1∶3,Al很可能与钛铁氧化物固溶,形成某种复合化合物并导致球团矿还原难度增加.运用三种不同模型对球团矿还原过程对比分析,发现混合模型可以很好地表征球团矿不同阶段的还原过程.利用混合模型计算得出球团矿还原过程的动力学参数.结果表明,随着富氧率的升高,球团矿还原活化能逐渐降低,从不富氧到富氧79%条件下,活化能由26.5 k J/mol降低到19.68 k J/mol,活化能的降低增加了相同条件下活化分子的数量,提高了反应速率,有利于球团矿在较低还原温度条件下快速反应.  相似文献   

10.
钒钛磁铁矿结构与高温还原的关系   总被引:1,自引:0,他引:1  
研究了不同结构类型的钒钛磁铁矿石的低温及高温还原性能,分析了矿石结构,预处理方式,还原温度,还原时间和还原条件对还性的影响,还原性能与钒钛磁铁矿熔融还原工艺的关系及对高炉冶炼的影响。  相似文献   

11.
将高铬型钒钛磁铁精矿、还原剂煤粉和黏结剂按一定比例配料、混匀、模压成型后进行直接还原,研究了煤种、碳氧摩尔比(COR)、还原温度、还原时间和添加剂等因素对高铬型钒钛磁铁精矿还原产物金属化率的影响,采用X射线衍射对还原产物进行物相分析.结果表明:以无烟煤为还原剂,碳氧摩尔比1.2、还原温度1 350℃、还原时间60 min的条件下,未采用添加剂时产物金属化率最高可达89.80%;在碳氧摩尔比1.2、还原温度1 250℃、保温时间30 min、添加质量分数为3%Ca F2条件下,还原产物金属化率达85.27%,有效降低了还原过程的能耗.还原温度低于1 250℃时,产物主要物相为金属铁,同时还有少量的Fe2O3,Fe3O4,Fe3C,Fe0.5M g0.5Ti2O5和Ti O2;1 300℃时,还原产物中出现Fe2VO4;高于1 350℃时,还原产物中出现了(Fe,Cr)和Ti3O5.  相似文献   

12.
采取“细磨处理高铬型钒钛磁铁矿”和“以粒度较细的廉价欧控矿代替现场生产用矿”两种优化措施,考察了高铬型钒钛磁铁矿配量增加对氧化球团质量的影响,探索了高铬型钒钛矿在球团原料中配量增加的可行性.结果表明:“细磨处理高铬型钒钛磁铁矿”和“以粒度较细的廉价欧控矿代替现场生产用矿”,当高铬型钒钛矿配量40%时,抗压强度分别为2475N·个-1和2005N·个-1,膨胀率为192%和16%,皆满足高炉生产要求,可实现该矿在原料中配量增加,能达到高铬型钒钛矿预期90万t/年的处理目标.  相似文献   

13.
以钒钛磁铁矿现场高炉渣为基础,纯化学试剂调制渣样,在中性气氛条件下研究了炉渣二元碱度及Mg O,Al2O3,Ti O2,V2O5含量对实验渣系冶金性能的影响.结果表明:增加碱度和Mg O含量,炉渣熔化性温度(tm)、初始黏度(η0)和高温黏度(ηh)呈先降低后升高趋势;增大Al2O3含量,炉渣tm升高,η0先降低后升高,ηh呈上升趋势;增大Ti O2含量,炉渣tm升高,η0和ηh逐渐下降,炉渣黏流活化能升高,热稳定性变差;增大V2O5含量,炉渣tm先降低后升高,η0和ηh逐渐增大.高炉冶炼钒钛磁铁矿适宜渣系为:二元碱度1.15,Mg O,Al2O3,Ti O2,V2O5质量分数分别为13%,13%,7%,0.30%.  相似文献   

14.
实验室条件下,研究了硼铁矿对高铬型钒钛矿烧结工艺及冶金性能的影响.研究表明:随着硼铁矿质量配比的升高,垂直烧结速度、成品率、转鼓指数、烧结杯利用系数、综合指标及低温还原粉化性能均呈先升高后降低的趋势,在硼铁矿质量配比为5.0%时,以上各指数均达到最高值,分别为28.84 mm·min-1,86.02%,61.2%,1.919 t·(m2·h)-1,363及90.76%,均优于未配加硼铁矿时的烧结矿性能.因此,烧结矿性能得以优化,可以为高炉冶炼提供更为优质的高铬型钒钛烧结矿.  相似文献   

15.
以气基竖炉还原得到的金属化率为95%的高铬型钒钛磁铁矿球团为原料,在高频感应炉内进行电热熔分深度还原.设计了三因素三水平正交试验,重点考察熔分温度、熔分时间及二元碱度对熔分效果的影响,并运用综合加权评分法对试验结果进行分析,发现熔分后可获得含钒、铬铁块和高钛渣.适宜的高铬型钒钛磁铁矿电热熔分参数为:二元碱度1.1,熔分温度1 650℃,熔分时间45 min.对熔分综合指标影响大小依次为二元碱度熔分温度熔分时间.另外,分析二元碱度对熔分效果的影响规律及作用机理可知,随碱度增大,铁、钒、铬及钛的收得率呈先上升后下降的趋势,在二元碱度为1.1时,高铬型钒钛矿熔分效果最好.  相似文献   

16.
攀西钒钛磁铁矿高压辊磨的产品特性   总被引:3,自引:0,他引:3  
对攀西钒钛磁铁矿进行了高压辊磨超细粉碎,分析了不同粉碎工艺对粉碎产品粒度特性的影响,研究了不同粉碎方式下矿石Bond球磨功指数的变化以及微裂纹产生的情况.结果表明:辊面压力的增加使粉碎产品的破碎比增大,粒度分布更加均匀;边料循环量的增加,使粉碎产品粒度变细,但均匀性降低;-3.2 mm分级全闭路循环的粉碎产品与颚式破碎机产品相比细粒级含量明显增加,而且粒度分布更加均匀;高压辊磨机粉碎的钒钛磁铁矿石内部产生了大量的晶内裂纹和解离裂纹,使其Bond球磨功指数(目标粒度0.074 mm)比颚式破碎机的粉碎产品降低14.05%.  相似文献   

17.
磁铁精矿球团氧化动力学   总被引:3,自引:1,他引:3  
推导出了磁铁矿氧化"单界面未反应核"修正模型,并应用该模型研究了凹山磁铁精矿球团的氧化动力学.研究结果表明:在800~950℃时,凹山磁铁精矿球团氧化反应表观活化能为64 kJ/mol,其氧化由化学反应所控制;在1000~1 050℃时,氧化反应的表观活化能为13 kJ/mol,反应为反应产物层的内扩散所控制;在950~1000℃时,氧化反应为混合控制;在较低氧化温度下,加入MgO可以降低化学反应阻力,提高球团的氧化率;在较高氧化温度下,MgO对扩散阻力无明显影响,添加MgO并不提高氧化反应速度,但在任何氧化温度下,添加MgO不改变磁铁矿氧化反应的控制环节.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号