首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Combining forecasts, we analyse the role of information flow in computing short‐term forecasts up to one quarter ahead for the euro area GDP and its main components. A dataset of 114 monthly indicators is set up and simple bridge equations are estimated. The individual forecasts are then pooled, using different weighting schemes. To take into consideration the release calendar of each indicator, six forecasts are compiled successively during the quarter. We found that the sequencing of information determines the weight allocated to each block of indicators, especially when the first month of hard data becomes available. This conclusion extends the findings of the recent literature. Moreover, when combining forecasts, two weighting schemes are found to outperform the equal weighting scheme in almost all cases. Compared to an AR forecast, these improve by more than 40% the forecast performance for GDP in the current and next quarter. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
    
This paper investigates the sensitivity of out‐of‐sample forecasting performance over a span of different parameters of l in the dynamic Nelson–Siegel three‐factor AR(1) model. First, we find that the ad hoc selection of l is not optimal. Second, we find a substantial difference in factor dynamics between investment‐grade and speculative‐grade corporate bonds from 1994:12 to 2006: 4. Third, we suggest that the three‐factor model is sufficient to explain the main variations of corporate yield changes. Finally, the parsimonious Nelson–Siegel three‐factor AR(1) model remains competitive in the out‐of‐sample forecasting of corporate yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper focuses on the effects of disaggregation on forecast accuracy for nonstationary time series using dynamic factor models. We compare the forecasts obtained directly from the aggregated series based on its univariate model with the aggregation of the forecasts obtained for each component of the aggregate. Within this framework (first obtain the forecasts for the component series and then aggregate the forecasts), we try two different approaches: (i) generate forecasts from the multivariate dynamic factor model and (ii) generate the forecasts from univariate models for each component of the aggregate. In this regard, we provide analytical conditions for the equality of forecasts. The results are applied to quarterly gross domestic product (GDP) data of several European countries of the euro area and to their aggregated GDP. This will be compared to the prediction obtained directly from modeling and forecasting the aggregate GDP of these European countries. In particular, we would like to check whether long‐run relationships between the levels of the components are useful for improving the forecasting accuracy of the aggregate growth rate. We will make forecasts at the country level and then pool them to obtain the forecast of the aggregate. The empirical analysis suggests that forecasts built by aggregating the country‐specific models are more accurate than forecasts constructed using the aggregated data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we use Google Trends data for exchange rate forecasting in the context of a broad literature review that ties the exchange rate movements with macroeconomic fundamentals. The sample covers 11 OECD countries’ exchange rates for the period from January 2004 to June 2014. In out‐of‐sample forecasting of monthly returns on exchange rates, our findings indicate that the Google Trends search query data do a better job than the structural models in predicting the true direction of changes in nominal exchange rates. We also observed that Google Trends‐based forecasts are better at picking up the direction of the changes in the monthly nominal exchange rates after the Great Recession era (2008–2009). Based on the Clark and West inference procedure of equal predictive accuracy testing, we found that the relative performance of Google Trends‐based exchange rate predictions against the null of a random walk model is no worse than the purchasing power parity model. On the other hand, although the monetary model fundamentals could beat the random walk null only in one out of 11 currency pairs, with Google Trends predictors we found evidence of better performance for five currency pairs. We believe that these findings necessitate further research in this area to investigate the extravalue one can get from Google search query data.  相似文献   

5.
A number of papers in recent years have investigated the problems of forecasting contemporaneously aggregated time series and of combining alternative forecasts of a time series. This paper considers the integration of both approaches within the example of assessing the forecasting performance of models for two of the U.K. monetary aggregates, £M3 and MO. It is found that forecasts from a time series model for aggregate £M3 are superior to aggregated forecasts from individual models fitted to either the components or counterparts of £M3 and that an even better forecast is obtained by forming a linear combination of the three alternatives. For MO, however, aggregated forecasts from its components prove superior to either the forecast from the aggregate itself or from a linear combination of the two.  相似文献   

6.
This paper compares the forecasts of recession and recovery made by five non-government U.K. teams modelling the economy (Cambridge Econometrics, the London Business School, the National Institute of Economic and Social Research, the Cambridge Economic Policy Group and the Liverpool Research Group). The paper concentrates on annual ex ante projections as published over the period 1978-1982, i.e. forecasts made, before the event, of the onset, length, depth and character of the economic recession in the U.K. which began in 1979. The comparison is in terms of year by year changes in production, unemployment, prices and other variables. It concludes that no group was systematically better or worse than other groups (confirming U.S. experience) and that the groups tended to perform better in their chosen areas of specialization, e.g. medium-term groups did better at forecasting the medium-term outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号