共查询到20条相似文献,搜索用时 15 毫秒
1.
n-李代数导子的Jordan-Chevalley分解 总被引:2,自引:0,他引:2
赵冠华 《五邑大学学报(自然科学版)》2003,17(4):27-29
利用n-李代数导子性质和一般线性变换的Jordan-Chevalley分解,得到,n-李代数的导子也可以进行Jordan—Chevalley分解. 相似文献
2.
赵冠华 《海南大学学报(自然科学版)》2004,22(3):205-208
导子是一种特殊的线性变换,在研究n-李代数的结构和表示理论中起着重要作用.为进 一步讨论n-李代数的结构,引入n-李代数广义导子的概念,指出几种广义导子按2元运算定义的 括积也构成李代数,并得到了这几种广义导子的分解. 相似文献
3.
n-李代数的导子和自同构群 总被引:3,自引:0,他引:3
赵冠华 《河北师范大学学报(自然科学版)》2004,28(2):127-129
导子是一种特殊的线性变换,它在研究n李代数的结构和表示理论中起着重要作用.讨论了n李代数导子及内导子的性质,得到了n李代数的幂零内导子生成的一种子群是自同构群的正规子群. 相似文献
4.
关于n-李代数导子的一个注记 总被引:1,自引:0,他引:1
借助于n-李代数对导子的根子空间直和分解以及它的正则表示的研究,得出具有一个特征根均为正实数的导子的n-李代数是幂零的,从而用导子刻画了n-李代数的幂零性. 相似文献
5.
构造了n-李代数的uce函子并定义了它的乘法运算,给出了在函子作用下n-李代数自同构群提升和导子提升的条件是n-李代数完全,完善了n-李代数的扩张理论. 相似文献
6.
对一个己知的n-李代数L和一个已知的交换的结合代数A构造了一个n-李代数AL,称为A与L的张量n-李代数,并证明了A与L的导子代数的张量积和A与A的导子代数的张量积都是张量n-李代数的导子代数的子代数. 相似文献
7.
n—李代数是李代数的一种自然推广,它的一类自同态在研究n—李代数的分解唯一性时起着重要作用.本文主要讨论了n—李代数的这类自同态的性质,改进和推广了文[1]的结果. 相似文献
8.
引入了完备n-李代数的概念,给出了完备n-李代数的例子,举例说明了半单的n-李代数不一定是完备n-李代数.通过n-李代数的导子性质的研究,得到了完备n-李代数的分解定理. 相似文献
9.
研究域F上一类5维3-李代数的结构特征.研究了当dimA1=4时F域上5维3-李代数的结构及导子代数的结构,且给出了每个导子的具体表示形式. 相似文献
10.
设B(q)是一类Block型李代数,其基为{Ln,i|a,i∈Z,i≥0),括积运算定义为[La,i,Li,j]=(β(i+g)-a(j+q))La+β,i+j,其中q∈1/3Z/1/2Z.计算了B(q)的导子. 相似文献
11.
给出Jordan-李代数L的广义导子代数GDer(L)、拟导子代数QDer(L)、型心C(L)、拟型心QC(L)及中心导子代数ZDer(L)的一些基本性质,并证明QDer(L)可以嵌入并成为一个更大的Jordan-李代数的导子. 相似文献
12.
13.
对于李代数g的通过模V的平凡扩张g∝V,作者分别构造了它的自同构群和导子李代数的由半直积给出的子群和子代数.作为应用,作者在单李代数及其有限维单模上得到了相应的自同构群和导子李代数的完整刻画. 相似文献
14.
研究满足β(L)=m-n+1的一类非交换n-李代数的结构, 对导代数维数小于4时的非交换n-李代数进行分类, 证明当导代数维数为1,2,3时分别存在2类、 6类、11类不同构的n-李代数, 进而证明满足β(L)=m-n+1, Z(L)L1的非交换n-李代数具有性质(m-n+1)/2≤dimL1≤m-n+1. 相似文献
15.
研究满足β(L)=m-n+1的一类非交换n-李代数的结构, 对导代数维数小于4时的非交换n-李代数进行分类, 证明当导代数维数为1,2,3时分别存在2类、 6类、11类不同构的n-李代数, 进而证明满足β(L)=m-n+1, Z(L)L1的非交换n-李代数具有性质(m-n+1)/2≤dimL1≤m-n+1. 相似文献
16.
给出了代数上2-局部李n导子的概念,并证明了在一定的条件下,三角代数上的2-局部李n导子可以表示为一个导子和一个线性映射之和的形式,从而将2-局部李导子的结果推广到了2-局部李n导子的情形. 相似文献
17.
本文主要讨论一些李代数的李triple导子代数的结构,包括复数域上三维李代数的李triple导子代数的结构和低维幂零李代数的李triple导子代数的结构。首先找到复数域上三维李代数的分类与低维幂零李代数的分类,然后利用李triple导子的定义计算出这两类李代数的李triple导子代数的结构。 相似文献
18.
利用恒等式理论,证明了在一定条件下,三角代数T上的局部广义李n导子δ可以表示为δ=G+h,其中G:T→T为广义导子,h:T→Z(T)满足:对于任意的x1,x2,…,xn∈T,有h(pn(x1,x2,…,xn))=0,其中pn为(n-1)-交换子.最后给出了上述结果的一个应用. 相似文献
19.
20.
沈如林 《江汉大学学报(自然科学版)》2003,31(4):17-18
设 A 是域 F 上的有限维素代数, , 是 A 上的导子. 本文给出了 及 成为幂零导子的两个必要条件: 若存在0≠a A 满足 a = 0,并且对于每个 x A, 存在正整数 n x ,使得 a n x x = 0,则 是幂零导子; 若 ≠0 且 = ,如果对于每个 x A, 存在正整数n x , 使得 n x= 0,则 是幂零导子. 相似文献