首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
Sierpinski垫片是经典的自相似分形集,其Hausdorff维数是log23,但其Hausdorff测度的计算仍非常困难.在构造的覆盖集中,给出计算被覆盖三角形数的算法,从而估计出相应的Hausdorff测度Hs(S)≤0.817 918 996…,此结果优于目前现有文献中的已知结果.  相似文献   

2.
泛Sierpinski垫片的Hausdorff测度   总被引:2,自引:0,他引:2  
定义泛Sierpinski垫片,得到压缩比为a(1/2≥a≥3√2/3)的泛Sierpinski垫片的Hausdorff测度上界的最好估计为H^s(S)≤25/22(1 a/1 a a)^s。  相似文献   

3.
Sierpinski垫片是具有严格自相似性的经典分形集之一,本给出了一种Sierpinski垫片的构造,并得到了它的Hausdorff测度的准确值。  相似文献   

4.
Koch曲线和Sierpinski垫片的Hausdorff测度的估计   总被引:4,自引:0,他引:4  
Koch曲线和Sierpinski垫片是两个经典的满足开集条件的自相似分形集。由自相似分形集的维数公式知,它们的Hausdorff维数分别是log3^4和log2^3。然而它们的Hausdorff测试的计算却是一个非常困难的问题。首先构造Koch曲线和Sierpinski垫片的特殊覆盖,然后对这种覆盖进行处理,根据自相似分形集的Hausdorff测度的齐次性质,分别给出了Koch曲线和Sierpi  相似文献   

5.
文章建立了估计一类Sierpinski垫片的Hausdorff测度上界的一个公式.由于这一类Sierpinski垫片的Hausdorff维数可以从1到log23连续变化,因而获得主要结果与现有文献的结论有本质的不同.  相似文献   

6.
文章给出了Sierpinski垫片的Hausdorff测度的上限估计的一种算法,用计算机实现后,得到了Sierpinski垫片的Hausdorff测度的较好的估值.  相似文献   

7.
考虑Sierpinski垫片某个特定的子集序列,相应地构造含有整数参数k,覆盖此子集序列诸子集的覆盖序列并利用Sierpinski垫片的自相似性得到了以k为序数指标,从第三项起此垫片的Hausdorf测度的上界单调上升序列,而该序列的第三项即是目前所知道的Sierpinski垫片Hausdorf测度的新的最好上界.  相似文献   

8.
Kock曲线和Sierpinski垫片的Hausdorff测度   总被引:12,自引:0,他引:12  
关于Kock曲线和Sierpinski垫片的Hausdorff测度有2个猜测,本文的结果支持其中之一而推翻另一个。  相似文献   

9.
该文利用自相似集的部分估计原理,得到了Sierpinski垫片的Hausdorff测度的上限估值为0.835 615 1,这是迄今为止利用手工计算的最好结果.  相似文献   

10.
关于分形维数的证明,如果能给出其下界和上界的估计,则证明成立,但是关于下界的估计往往比较困难。本文将引入Moran开集对Sierpinski垫片的Hausdorff维数作详细的证明。  相似文献   

11.
上凸密度函数与Hausdorff测度—Sierpinski垫片   总被引:6,自引:1,他引:5  
主要讨论了Sierpinski垫片的上凸密度函数在其端点处的计算问题,并通过具体的数值计算,得出了在端点的上凸密度函数不等于1的结论。  相似文献   

12.
Hausdorff测度的计算与估计   总被引:2,自引:0,他引:2  
把计算Hausdorff 测度转化成极限过程, 对一般分形得到1 个一般模型, 而对自相似集则得到1 个约化模型. 作为应用, 得到Sierpinski 垫片的Hausdorff 测度的较好上限  相似文献   

13.
得到正方形上一类Sierpinski地毯En的等价构造,即为一类六边形上的Sierpinski地毯Qn;通过在Qn上定义一个质量分布,由质量分布原理得到下界,从而完全确定了En的Hausdorff测度的准确值.  相似文献   

14.
利用儒歇定理证明了一类新函数G(z)=∫K(1-zw)-1dμ(w)在|z|<1内没有零点,1/(G(z))在|z|<1内解析,其中K为Sierpinski垫.  相似文献   

15.
研究了自相似分形的Hausdorf测度的上界估计问题,得到以下结果:设S是Sierpinski垫,s=log23是S的Hausdorf维数,对任一x,0<x<12,将x表为x=12i1+12i2+…,i1<i2<…,i1,i2,…∈N.则S的Hausdorf测度Hs(S)满足Hs(S)≤11-32∞j=12j3ij(1-x)s.取x=123+(124+126+…+122k+…),k=2,3,….则得到Hs(S)<0.8701.记H(x)=11-32∞j=12j3ij(1-x)s则inf0<x<12{H(x)}≥min{H(i2n)(2n-i-12n-1)S:i=1,2,…,2n-1-1}.取n=20,上机运算得inf0<x<12{H(x)}>0.8700.由此可知0.8701是本文这种方法估计Sierpinski垫的Hausdorf测度的相当好的上界.  相似文献   

16.
对每一个m≥1,定义一个Sierpinski海绵,它们的Hausdorf维数为1,它们的1-维Hausdorf测度被完全确定.  相似文献   

17.
The estimate of Hausdorff measure H' (F) of Sierpinski carpet F with Hausdorff dimension s =logS/log3 is derived as Hs(F)≤55102s--864855992=1.089147….  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号