首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uchida K  Takahashi S  Harii K  Ieda J  Koshibae W  Ando K  Maekawa S  Saitoh E 《Nature》2008,455(7214):778-781
The generation of electric voltage by placing a conductor in a temperature gradient is called the Seebeck effect. Its efficiency is represented by the Seebeck coefficient, S, which is defined as the ratio of the generated electric voltage to the temperature difference, and is determined by the scattering rate and the density of the conduction electrons. The effect can be exploited, for example, in thermal electric-power generators and for temperature sensing, by connecting two conductors with different Seebeck coefficients, a device called a thermocouple. Here we report the observation of the thermal generation of driving power, or voltage, for electron spin: the spin Seebeck effect. Using a recently developed spin-detection technique that involves the spin Hall effect, we measure the spin voltage generated from a temperature gradient in a metallic magnet. This thermally induced spin voltage persists even at distances far from the sample ends, and spins can be extracted from every position on the magnet simply by attaching a metal. The spin Seebeck effect observed here is directly applicable to the production of spin-voltage generators, which are crucial for driving spintronic devices. The spin Seebeck effect allows us to pass a pure spin current, a flow of electron spins without electric currents, over a long distance. These innovative capabilities will invigorate spintronics research.  相似文献   

2.
Le Breton JC  Sharma S  Saito H  Yuasa S  Jansen R 《Nature》2011,475(7354):82-85
Heat generation by electric current, which is ubiquitous in electronic devices and circuits, raises energy consumption and will become increasingly problematic in future generations of high-density electronics. The control and re-use of heat are therefore important topics for existing and emerging technologies, including spintronics. Recently it was reported that heat flow within a ferromagnet can produce a flow of spin angular momentum-a spin current-and an associated voltage. This spin Seebeck effect has been observed in metallic, insulating and semiconductor ferromagnets with temperature gradients across them. Here we describe and report the demonstration of Seebeck spin tunnelling-a distinctly different thermal spin flow, of purely interfacial nature-generated in a tunnel contact between electrodes of different temperatures when at least one of the electrodes is a ferromagnet. The Seebeck spin current is governed by the energy derivative of the tunnel spin polarization. By exploiting this in ferromagnet-oxide-silicon tunnel junctions, we observe thermal transfer of spins from the ferromagnet to the silicon without a net tunnel charge current. The induced spin accumulation scales linearly with heating power and changes sign when the temperature differential is reversed. This thermal spin current can be used by itself, or in combination with electrical spin injection, to increase device efficiency. The results highlight the engineering of heat transport in spintronic devices and facilitate the functional use of heat.  相似文献   

3.
A quantum spin-liquid phase is an intriguing possibility for a system of strongly interacting magnetic units in which the usual magnetically ordered ground state is avoided owing to strong quantum fluctuations. It was first predicted theoretically for a triangular-lattice model with antiferromagnetically coupled S = 1/2 spins. Recently, materials have become available showing persuasive experimental evidence for such a state. Although many studies show that the ideal triangular lattice of S = 1/2 Heisenberg spins actually orders magnetically into a three-sublattice, non-collinear 120° arrangement, quantum fluctuations significantly reduce the size of the ordered moment. This residual ordering can be completely suppressed when higher-order ring-exchange magnetic interactions are significant, as found in nearly metallic Mott insulators. The layered molecular system κ-(BEDT-TTF)(2)Cu(2)(CN)(3) is a Mott insulator with an almost isotropic, triangular magnetic lattice of spin-1/2 BEDT-TTF dimers that provides a prime example of a spin liquid formed in this way. Despite a high-temperature exchange coupling, J, of 250 K (ref. 6), no obvious signature of conventional magnetic ordering is seen down to 20 mK (refs 7, 8). Here we show, using muon spin rotation, that applying a small magnetic field to this system produces a quantum phase transition between the spin-liquid phase and an antiferromagnetic phase with a strongly suppressed moment. This can be described as Bose-Einstein condensation of spin excitations with an extremely small spin gap. At higher fields, a second transition is found that suggests a threshold for deconfinement of the spin excitations. Our studies reveal the low-temperature magnetic phase diagram and enable us to measure characteristic critical properties. We compare our results closely with current theoretical models, and this gives some further insight into the nature of the spin-liquid phase.  相似文献   

4.
5.
6.
针对非磁性杂质对碳纳米管的影响问题作了系统理论的分析,为设计和实现具有优良性能的基于碳纳米管的量子器件提供理论依据.应用格林函数方法计算态密度的结果表明,单个点缺陷在碳纳米管中引起准束缚态;给出准束缚态能级和峰宽的解析公式,分析它们与碳纳米管手型和直径之间的关系;逐点计算局域态密度发现,在实空间准束缚态是一个非常局域化的效应,离开缺陷即迅速衰减.同时,缺陷在碳纳米管中会引起Friedel振荡,其方向与碳纳米管手型有关.  相似文献   

7.
针对非磁性杂质对碳纳米管的影响问题作了系统理论的分析,为设计和实现具有优良性能的基于碳纳米管的量子器件提供理论依据.应用格林函数方法计算态密度的结果表明,单个点缺陷在碳纳米管中引起准束缚态;给出准束缚态能级和峰宽的解析公式,分析它们与碳纳米管手型和直径之间的关系;逐点计算局域态密度发现,在实空间准束缚态是一个非常局域化...  相似文献   

8.
Various applications relevant to the exciton dynamics,such as the organic solar cell,the large-area organic light-emitting diodes and the thermoelectricity,are operating under temperature gradient.The potential abnormal behavior of the exicton dynamics driven by the temperature difference may affect the efficiency and performance of the corresponding devices.In the above situations,the exciton dynamics under temperature difference is mixed with  相似文献   

9.
采用甩带快淬法制备了FeNi基[(Fe50Ni50)77.5Cr0.5Si11B11]软磁非晶薄带,测试与分析了FeNi基合金薄带的微结构、静磁性能和磁阻抗.结果表明:FeNi基合金薄带在快淬态便具有良好的软磁性能和巨磁阻抗(GMI)效应,薄带的几何尺寸对其GMI效应有明显影响,尺寸为宽2 mm,长20 mm的薄带具有最佳GMI效应,在5 MHz下,最大纵向GMI比达到25.0%,最大横向GMI比达到19.7%.讨论了最佳几何尺寸样品的磁阻抗比在不同的频率下随外加直流磁场的变化规律.  相似文献   

10.
从巨磁阻效应正式拉开自旋电子学的序幕开始,如何控制和操纵电子的自旋自由度在学术界和工业界掀起了巨大的研究浪潮,如何产生并测量自旋流也是自旋电子学面临的重大挑战.自旋轨道耦合为自旋电子学提供了利用全电学来控制自旋的物理基础,由自旋轨道耦合引起的自旋霍尔效应则为自旋电子学提供了产生较大纯自旋流的方法.本文从1879年Edwin Hall发现的那个迷人的效应谈起,同时从自旋轨道耦合的起源来认识自旋霍尔效应,进一步探讨了如何利用其逆效应来探测自旋霍尔效应及自旋流,并简单总结了与自旋霍尔效应相关的部分新效应及新应用.  相似文献   

11.
Electronics in a spin.   总被引:1,自引:0,他引:1  
M L Roukes 《Nature》2001,411(6839):747-748
  相似文献   

12.
To study and control the behaviour of the spins of electrons that are moving through a metal or semiconductor is an outstanding challenge in the field of 'spintronics', where possibilities for new electronic applications based on the spin degree of freedom are currently being explored. Recently, electrical control of spin coherence and coherent spin precession during transport was studied by optical techniques in semiconductors. Here we report controlled spin precession of electrically injected and detected electrons in a diffusive metallic conductor, using tunnel barriers in combination with metallic ferromagnetic electrodes as spin injector and detector. The output voltage of our device is sensitive to the spin degree of freedom only, and its sign can be switched from positive to negative, depending on the relative magnetization of the ferromagnetic electrodes. We show that the spin direction can be controlled by inducing a coherent spin precession caused by an applied perpendicular magnetic field. By inducing an average precession angle of 180 degrees, we are able to reverse the sign of the output voltage.  相似文献   

13.
研究了体积比为0.45≤x≤0.8的Cux(SiO2)1-x样品的霍耳系数与成份的关系,随着金属体积比的降低,霍耳系数R迅速增加,并在x=0.51时达到最大,其值为x=0.8的样品霍耳系数的700倍,远超过经典渗流理论计算数值.本研究表明,这种非磁性金属系统中的巨霍耳效应(GHE)是由界观尺度的量子干涉效应引起的.  相似文献   

14.
研究了体积比为 0 .45≤x≤ 0 .8的Cux(SiO2 ) 1 -x 样品的霍耳系数与成份的关系 ,随着金属体积比的降低 ,霍耳系数R迅速增加 ,并在x=0 .51时达到最大 ,其值为x =0 .8的样品霍耳系数的 70 0倍 ,远超过经典渗流理论计算数值 .本研究表明 ,这种非磁性金属系统中的巨霍耳效应 (GHE)是由界观尺度的量子干涉效应引起的  相似文献   

15.
具有磁电效应的A类反铁磁系统的自旋波理论   总被引:1,自引:0,他引:1  
自旋波理论通常用来研究低温下各类铁磁、反铁磁的磁性质 .运用自旋波理论 ,考虑外电场作用下产生的磁电效应 ,研究了A类反铁磁系统在主要高对称性方向的自旋波频谱以及由于磁电效应而发生的改变 .发现磁电效应电场的作用相当于一个虚构的磁场 ,能够引起自旋波能谱的分裂  相似文献   

16.
Halsey TC 《Nature》2003,424(6952):1005-1006
  相似文献   

17.
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4?T), low-temperature (2.9?K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.  相似文献   

18.
Valenzuela SO  Tinkham M 《Nature》2006,442(7099):176-179
The generation, manipulation and detection of spin-polarized electrons in nanostructures define the main challenges of spin-based electronics. Among the different approaches for spin generation and manipulation, spin-orbit coupling--which couples the spin of an electron to its momentum--is attracting considerable interest. In a spin-orbit-coupled system, a non-zero spin current is predicted in a direction perpendicular to the applied electric field, giving rise to a spin Hall effect. Consistent with this effect, electrically induced spin polarization was recently detected by optical techniques at the edges of a semiconductor channel and in two-dimensional electron gases in semiconductor heterostructures. Here we report electrical measurements of the spin Hall effect in a diffusive metallic conductor, using a ferromagnetic electrode in combination with a tunnel barrier to inject a spin-polarized current. In our devices, we observe an induced voltage that results exclusively from the conversion of the injected spin current into charge imbalance through the spin Hall effect. Such a voltage is proportional to the component of the injected spins that is perpendicular to the plane defined by the spin current direction and the voltage probes. These experiments reveal opportunities for efficient spin detection without the need for magnetic materials, which could lead to useful spintronics devices that integrate information processing and data storage.  相似文献   

19.
Quantum control of individual spins in condensed-matter devices is an emerging field with a wide range of applications, from nanospintronics to quantum computing. The electron, possessing spin and orbital degrees of freedom, is conventionally used as the carrier of quantum information in proposed devices. However, electrons couple strongly to the environment, and so have very short relaxation and coherence times. It is therefore extremely difficult to achieve quantum coherence and stable entanglement of electron spins. Alternative concepts propose nuclear spins as the building blocks for quantum computing, because such spins are extremely well isolated from the environment and less prone to decoherence. However, weak coupling comes at a price: it remains challenging to address and manipulate individual nuclear spins. Here we show that the nuclear spin of an individual metal atom embedded in a single-molecule magnet can be read out electronically. The observed long lifetimes (tens of seconds) and relaxation characteristics of nuclear spin at the single-atom scale open the way to a completely new world of devices in which quantum logic may be implemented.  相似文献   

20.
Composite wires of 100 μm insulated CuBewire plated with a layer of NiFeB were produced by elec-troless-deposition, and their magnetic properties were stud-led. The results showed that a good magneto-impedance (MI)effect can be obtained at relatively low frequency. The largestMI ratio (△Z/Z)max obtained is 250% at 500 kHz. Mag-neto-resistance effect was also observed at low frequency,with the (△R/R)max observed to be -8.5% at 540 Hz and 38.7% at 10 kHz. Results are discussed, and the equivalent resistance and inductance as the result of the NiFeB layer are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号