共查询到18条相似文献,搜索用时 63 毫秒
1.
基于K -均值聚类的混合聚类算法 总被引:1,自引:0,他引:1
刘明术 《安庆师范学院学报(自然科学版)》2016,(1)
K-均值聚类算法是聚类算法中比较典型的算法之一,在其各类改进算法中都受到了离群点、初质心、类个数等因素的干扰。本文利用相似密度提出一种新的聚类初始质心选取和离群点判别方法,对K-均值聚类算法进行了改进。通过实验证明改进算法提高了聚类的有效性和稳定性。 相似文献
2.
一种改进的K一均值聚类算法 总被引:2,自引:0,他引:2
为了改进K-means聚类算法的不足,把混合粒子群优化算法引入到K-means聚类算法中,重新选取编码方式并构造适应度函数,在此基础上提出了一种改进的K-means聚类算法;通过两个经典数据集的测试,实验结果表明:改进的算法比K-means算法具有更好的全局寻优能力、更快的收敛速度,且其解的精度更高对初始聚类中心的敏感度降低. 相似文献
3.
基于改进K-均值聚类的图像分割算法研究 总被引:3,自引:0,他引:3
为了实现彩色图像的准确分割,研究了在HLS颜色空间中基于优化初始中心的加权K-均值彩色图像聚类算法.首先对大样本的目标颜色进行数理统计,获取优化的初始聚类中心,从而实现准确分类和避免K-均值容易陷入局部最优的问题;然后在HLS颜色空间中引入加权欧氏距离来度量对象间的相关性,通过调整系数使对象不同的颜色属性内在特征得以充分利用.实验证明,该算法在保持K-均值聚类简洁、收敛速度快的同时能产生更好的聚类效果,实现彩色图像的快速准确分割. 相似文献
4.
针对传统K均值聚类算法对初始聚类中心敏感,易陷入局部最优和对大数据集聚类速度慢的缺点,将ARIA与Kmeans算法相结合,提出了一种ARIA-Kmeans算法,即基于自适应半径免疫的K均值聚类算法。首先利用自适应半径免疫算法对数据进行预处理,产生能够代表原始数据分布以及密度信息的内部镜像数据;然后用K均值聚类算法对其进行多次聚类,获得最佳聚类中心,并将其作为初始聚类中心,推广到全部数据优化聚类效果;最后对其结果进行评价。实验结果表明,相对于传统Kmeans算法,新算法在保证聚类准确度的前提下,提高了算法运行的时间效率和稳定性。 相似文献
5.
基于SOFM网络的改进K-均值聚类算法 总被引:1,自引:0,他引:1
针对传统的K-均值聚类算法中随机选取初始聚类中心的缺陷,提出一种改进的K-均值聚类算法,利用自组织特征映射网络(SOFM)自动获得初始聚类中心.实验结果表明,改进的K-均值聚类算法能有效改善聚类性能,提高聚类的准确率. 相似文献
6.
7.
一种新的密度加权粗糙K-均值聚类算法 总被引:1,自引:0,他引:1
为了克服粗糙K-均值聚类算法初始聚类中心点随机选取,以及样本密度函数定义所存在的缺陷,基于数据对象所在区域的样本点密集程度,定义了新的样本密度函数,选择相互距离最远的K个高密度样本点作为初始聚类中心,克服了现有粗糙K-均值聚类算法的初始中心随机选取的缺点,从而使得聚类结果更接近于全局最优解。同时在类均值计算中,对每个样本根据定义的密度赋以不同的权重,得到不受噪音点影响的更合理的质心。利用UCI机器学习数据库的6组数据集,以及随机生成的带有噪音点的人工模拟数据集进行测试,证明本文算法具有更好的聚类效果,而且对噪音数据有很强的抗干扰性能。 相似文献
8.
基于改进GA的K-均值聚类算法 总被引:3,自引:0,他引:3
利用遗传算法或免疫规划算法解决初始聚类中心是较好的方法,但容易出现局部早熟现象.为了克服以上缺点,借助免疫机制的优点,将免疫原理的选择操作机制引入遗传算法中,提出基于改进遗传的K-均值聚类算法,该方法结合K-均值算法的高效性和改进遗传算法的全局优化能力,较好地解决了聚类中心优化问题.试验结果表明,本算法能够有效改善聚类质量. 相似文献
9.
一种新的确定K-均值算法初始聚类中心的方法 总被引:4,自引:0,他引:4
针对传统的K-均值算法聚类时初始聚类中心难以确定的缺点,利用超立方体技术,并依据同类样本中多数样本具有类似的子向量的特点,将落入同一超立方体的样本认为是一类。然后以这些样本的均值作为初始聚类的中心,实现了聚类中心的确定。通过仿真实验和应用于沙尘暴和非沙尘暴样本的分类,验证了此方法的有效性。 相似文献
10.
K均值聚类算法初始质心选择的改进 总被引:3,自引:0,他引:3
聚类分析在信息检索和数据挖掘等领域都有很广泛的应用,K均值聚类算法是一个比较简洁和快速的聚类算法,但是它存在着初始聚类个数必须事先设定以及初始质心的选择也具有随机性等缺陷,造成聚类的结果不是最优的。针对K均值聚类算法中的随机指定初始质心的缺点,提出了基于密度和最近邻相似度的初始质心选择算法,实验显示该算法可以生成质量较高而且较稳定的聚类结果,但是改进的算法需要事先设定最近邻相似度的阈值计算量较大等缺点,还有待改进。 相似文献
11.
K-means算法是聚类方法中常用的一种划分方法.基于扩展划分的思想,提出了一种基于扩展的K-means聚类算法(EK-means),在一定程度上避免了聚类结果陷入局部解的现象,减少了原始K-means算法因采用误差平方和准则函数而出现将大的聚类簇分割开的情况.该算法使用了基于距离的技术来处理孤立点,引进了一种基于扩展的方法进行聚类.实验表明该算法可扩展性好,能够很好的识别出孤立点或噪声,并且有很好的精度. 相似文献
12.
传统K-means聚类算法通过欧式距离计算样本的相似度,将数据所有的属性特征均平等对待,忽略每个属性特征的不同贡献,导致样本相似度计算的准确率不高.针对这个不足,提出一种特征加权的K-means算法进行优化.首先,运用Softmax和Sigmoid逻辑回归函数计算特征权重,使得加权的欧式距离更能准确地表示样本相似度;其... 相似文献
13.
为解决企业客户价值体现问题,提出一种T FA客户细分改进模型,以客户发展空间T、购买频次F和平均购买额A为指标,充分体现客户的价值和发展空间.首先,引入局部密度值ρ和信息熵H,改进K-means聚类算法,以优化传统K-means聚类方法初始聚类中心的选取问题;其次,通过搭建机器学习框架,对选取人工数据集及真实数据集进行... 相似文献
14.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。 相似文献
15.
K-均值算法是文档聚类中常用的一种划分方法.近年来,为提高聚类质量,出现了不少优化初始中心的改进算法.该文在基于密度选择中心点算法的基础上,建立了相似度概率模型辅助密度参数的确定,有效减少了参数选择的盲目性.同时,该文提出一种二分快速确定K值最优解的方法.大量实验结果表明,该方法具有理想的效果. 相似文献
16.
针对基于粗糙熵的图像分割算法不能满足复杂图像的多类目标提取的需要,本文先利用K-均值聚类算法对图像进行区域分割,再利用基于粗糙熵的方法对分割结果进行目标提取,从而达到多阈值分割的目的。通过对遥感图像进行分割处理,证明了改进后算法的有效性。 相似文献
17.
王泽生 《科技情报开发与经济》2008,18(20):144-145
介绍了入侵检测系统,将数据挖掘中的K-平均值聚类方法应用于入侵检测系统,对仿真实验的结果进行了分析,证明了将K-平均值方法用于网络入侵检测的可行性。 相似文献
18.
一种改进的基于遗传算法的K均值聚类算法 总被引:2,自引:0,他引:2
唐朝霞 《成都大学学报(自然科学版)》2011,30(2):162-164
结合遗传算法和K均值聚类算法的优点,提出一种改进的基于遗传算法的K均值聚类算法.将遗传算法的编码方法、初始化、适应度函数、选择、交叉和变异等较好地应用于聚类问题,不仅解决了K均值聚类算法中K值难以确定、对初始值敏感以及遗传算法存在收敛性差和容易早熟的缺点,而且实现了聚类中心的优化选择、K值的自动学习和基因的自适应变异等... 相似文献