首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Termination of protein synthesis occurs when the messenger RNA presents a stop codon in the ribosomal aminoacyl (A) site. Class I release factor proteins (RF1 or RF2) are believed to recognize stop codons via tripeptide motifs, leading to release of the completed polypeptide chain from its covalent attachment to transfer RNA in the ribosomal peptidyl (P) site. Class I RFs possess a conserved GGQ amino-acid motif that is thought to be involved directly in protein-transfer-RNA bond hydrolysis. Crystal structures of bacterial and eukaryotic class I RFs have been determined, but the mechanism of stop codon recognition and peptidyl-tRNA hydrolysis remains unclear. Here we present the structure of the Escherichia coli ribosome in a post-termination complex with RF2, obtained by single-particle cryo-electron microscopy (cryo-EM). Fitting the known 70S and RF2 structures into the electron density map reveals that RF2 adopts a different conformation on the ribosome when compared with the crystal structure of the isolated protein. The amino-terminal helical domain of RF2 contacts the factor-binding site of the ribosome, the 'SPF' loop of the protein is situated close to the mRNA, and the GGQ-containing domain of RF2 interacts with the peptidyl-transferase centre (PTC). By connecting the ribosomal decoding centre with the PTC, RF2 functionally mimics a tRNA molecule in the A site. Translational termination in eukaryotes is likely to be based on a similar mechanism.  相似文献   

2.
Oedema factor, a calmodulin-activated adenylyl cyclase, is important in the pathogenesis of anthrax. Here we report the X-ray structures of oedema factor with and without bound calmodulin. Oedema factor shares no significant structural homology with mammalian adenylyl cyclases or other proteins. In the active site, 3'-deoxy-ATP and a single metal ion are well positioned for catalysis with histidine 351 as the catalytic base. This mechanism differs from the mechanism of two-metal-ion catalysis proposed for mammalian adenylyl cyclases. Four discrete regions of oedema factor form a surface that recognizes an extended conformation of calmodulin, which is very different from the collapsed conformation observed in other structures of calmodulin bound to effector peptides. On calmodulin binding, an oedema factor helical domain of relative molecular mass 15,000 undergoes a 15 A translation and a 30 degrees rotation away from the oedema factor catalytic core, which stabilizes a disordered loop and leads to enzyme activation. These allosteric changes provide the first molecular details of how calmodulin modulates one of its targets.  相似文献   

3.
Izard T  Evans G  Borgon RA  Rush CL  Bricogne G  Bois PR 《Nature》2004,427(6970):171-175
Vinculin is a conserved component and an essential regulator of both cell-cell (cadherin-mediated) and cell-matrix (integrin-talin-mediated focal adhesions) junctions, and it anchors these adhesion complexes to the actin cytoskeleton by binding to talin in integrin complexes or to alpha-actinin in cadherin junctions. In its resting state, vinculin is held in a closed conformation through interactions between its head (Vh) and tail (Vt) domains. The binding of vinculin to focal adhesions requires its association with talin. Here we report the crystal structures of human vinculin in its inactive and talin-activated states. Talin binding induces marked conformational changes in Vh, creating a novel helical bundle structure, and this alteration actively displaces Vt from Vh. These results, as well as the ability of alpha-actinin to also bind to Vh and displace Vt from pre-existing Vh-Vt complexes, support a model whereby Vh functions as a domain that undergoes marked structural changes that allow vinculin to direct cytoskeletal assembly in focal adhesions and adherens junctions. Notably, talin's effects on Vh structure establish helical bundle conversion as a signalling mechanism by which proteins direct cellular responses.  相似文献   

4.
Zhao Y  Terry DS  Shi L  Quick M  Weinstein H  Blanchard SC  Javitch JA 《Nature》2011,474(7349):109-113
Neurotransmitter/Na(+) symporters (NSSs) terminate neuronal signalling by recapturing neurotransmitter released into the synapse in a co-transport (symport) mechanism driven by the Na(+) electrochemical gradient. NSSs for dopamine, noradrenaline and serotonin are targeted by the psychostimulants cocaine and amphetamine, as well as by antidepressants. The crystal structure of LeuT, a prokaryotic NSS homologue, revealed an occluded conformation in which a leucine (Leu) and two Na(+) are bound deep within the protein. This structure has been the basis for extensive structural and computational exploration of the functional mechanisms of proteins with a LeuT-like fold. Subsequently, an 'outward-open' conformation was determined in the presence of the inhibitor tryptophan, and the Na(+)-dependent formation of a dynamic outward-facing intermediate was identified using electron paramagnetic resonance spectroscopy. In addition, single-molecule fluorescence resonance energy transfer imaging has been used to reveal reversible transitions to an inward-open LeuT conformation, which involve the movement of transmembrane helix TM1a away from the transmembrane helical bundle. We investigated how substrate binding is coupled to structural transitions in LeuT during Na(+)-coupled transport. Here we report a process whereby substrate binding from the extracellular side of LeuT facilitates intracellular gate opening and substrate release at the intracellular face of the protein. In the presence of alanine, a substrate that is transported ~10-fold faster than leucine, we observed alanine-induced dynamics in the intracellular gate region of LeuT that directly correlate with transport efficiency. Collectively, our data reveal functionally relevant and previously hidden aspects of the NSS transport mechanism that emphasize the functional importance of a second substrate (S2) binding site within the extracellular vestibule. Substrate binding in this S2 site appears to act cooperatively with the primary substrate (S1) binding site to control intracellular gating more than 30?? away, in a manner that allows the Na(+) gradient to power the transport mechanism.  相似文献   

5.
Gutmann S  Haebel PW  Metzinger L  Sutter M  Felden B  Ban N 《Nature》2003,424(6949):699-703
Accurate translation of genetic information into protein sequence depends on complete messenger RNA molecules. Truncated mRNAs cause synthesis of defective proteins, and arrest ribosomes at the end of their incomplete message. In bacteria, a hybrid RNA molecule that combines the functions of both transfer and messenger RNAs (called tmRNA) rescues stalled ribosomes, and targets aberrant, partially synthesized, proteins for proteolytic degradation. Here we report the 3.2-A-resolution structure of the tRNA-like domain of tmRNA (tmRNA(Delta)) in complex with small protein B (SmpB), a protein essential for biological functions of tmRNA. We find that the flexible RNA molecule adopts an open L-shaped conformation and SmpB binds to its elbow region, stabilizing the single-stranded D-loop in an extended conformation. The most striking feature of the structure of tmRNA(Delta) is a 90 degrees rotation of the TPsiC-arm around the helical axis. Owing to this unusual conformation, the SmpB-tmRNA(Delta) complex positioned into the A-site of the ribosome orients SmpB towards the small ribosomal subunit, and directs tmRNA towards the elongation-factor binding region of the ribosome. On the basis of this structure, we propose a model for the binding of tmRNA on the ribosome.  相似文献   

6.
Ravelli RB  Gigant B  Curmi PA  Jourdain I  Lachkar S  Sobel A  Knossow M 《Nature》2004,428(6979):198-202
Microtubules are cytoskeletal polymers of tubulin involved in many cellular functions. Their dynamic instability is controlled by numerous compounds and proteins, including colchicine and stathmin family proteins. The way in which microtubule instability is regulated at the molecular level has remained elusive, mainly because of the lack of appropriate structural data. Here, we present the structure, at 3.5 A resolution, of tubulin in complex with colchicine and with the stathmin-like domain (SLD) of RB3. It shows the interaction of RB3-SLD with two tubulin heterodimers in a curved complex capped by the SLD amino-terminal domain, which prevents the incorporation of the complexed tubulin into microtubules. A comparison with the structure of tubulin in protofilaments shows changes in the subunits of tubulin as it switches from its straight conformation to a curved one. These changes correlate with the loss of lateral contacts and provide a rationale for the rapid microtubule depolymerization characteristic of dynamic instability. Moreover, the tubulin-colchicine complex sheds light on the mechanism of colchicine's activity: we show that colchicine binds at a location where it prevents curved tubulin from adopting a straight structure, which inhibits assembly.  相似文献   

7.
8.
Beta-hairpin families in globular proteins   总被引:1,自引:0,他引:1  
B L Sibanda  J M Thornton 《Nature》1985,316(6024):170-174
Beta-hairpins, one of the simplest supersecondary structures, are widespread in globular proteins, and have often been suggested as possible sites for nucleation. Here we consider the conformation and sequences of the loop regions of beta-hairpins by analysing proteins of known structure. We find that the 'tight' beta-hairpins, classified by the length and conformations of their loop regions, form distinct families and that the loop regions of the family members have sequences which are characteristic of that family. The two-residue hairpin loops include almost entirely I' or II' beta-turns, in contrast to the general preference for type I and type II turns. These findings are being used to help define templates or consensus sequences to be incorporated into our existing supersecondary structure prediction algorithm. This information can also be used in model-building homologous proteins.  相似文献   

9.
Hollenstein K  Frei DC  Locher KP 《Nature》2007,446(7132):213-216
ATP-binding cassette (ABC) transporter proteins carry diverse substrates across cell membranes. Whereas clinically relevant ABC exporters are implicated in various diseases or cause multidrug resistance of cancer cells, bacterial ABC importers are essential for the uptake of nutrients, including rare elements such as molybdenum. A detailed understanding of their mechanisms requires direct visualization at high resolution and in distinct conformations. Our recent structure of the multidrug ABC exporter Sav1866 has revealed an outward-facing conformation of the transmembrane domains coupled to a closed conformation of the nucleotide-binding domains, reflecting the ATP-bound state. Here we present the 3.1 A crystal structure of a putative molybdate transporter (ModB2C2) from Archaeoglobus fulgidus in complex with its binding protein (ModA). Twelve transmembrane helices of the ModB subunits provide an inward-facing conformation, with a closed gate near the external membrane boundary. The ATP-hydrolysing ModC subunits reveal a nucleotide-free, open conformation, whereas the attached binding protein aligns the substrate-binding cleft with the entrance to the presumed translocation pathway. Structural comparison of ModB2C2A with Sav1866 suggests a common alternating access and release mechanism, with binding of ATP promoting an outward-facing conformation and dissociation of the hydrolysis products promoting an inward-facing conformation.  相似文献   

10.
Solution structure of an unusually stable RNA hairpin, 5'GGAC(UUCG)GUCC.   总被引:1,自引:0,他引:1  
C Cheong  G Varani  I Tinoco 《Nature》1990,346(6285):680-682
  相似文献   

11.
R F Martin  N Holmes 《Nature》1983,302(5907):452-454
It no longer seems likely that DNA molecules in situ have a uniform conformation, represented by the classical B-form helix. For example, recent structural studies have shown that in certain conditions DNA can have a left-handed (so-called Z-form) helix, and have revealed extensive sequence-dependent variations of B-DNA helical parameters. Such sequence-dependent variations in DNA structure can be investigated in solution with reagents that bind to DNA in a conformation-dependent manner, and cut one or both strands of the double-helix at the site of binding, as, for example, has been shown for the endonuclease DNase I3. We describe here a simple way to endow a DNA-binding ligand with the ability to cleave DNA--labelling with 125I. The radiochemical damage associated with 125I decay induces a double-stranded DNA break. Using this technique we have shown that a sequence of four consecutive A X T base pairs is a necessary, but not sufficient, condition for strong binding to DNA of the bis-benzamide Hoechst 33258--presumably the other important factor is the conformation of the double-helix at the site of the (A/T)4 sequence. We suggest 125I-Hoechst 33258 may be a useful new probe of DNA structure.  相似文献   

12.
Li J  Van Vliet KJ  Zhu T  Yip S  Suresh S 《Nature》2002,418(6895):307-310
Nanometre-scale contact experiments and simulations demonstrate the potential to probe incipient plasticity--the onset of permanent deformation--in crystals. Such studies also point to the need for an understanding of the mechanisms governing defect nucleation in a broad range of fields and applications. Here we present a fundamental framework for describing incipient plasticity that combines results of atomistic and finite-element modelling, theoretical concepts of structural stability at finite strain, and experimental analysis. We quantify two key features of the nucleation and subsequent evolution of defects. A position-sensitive criterion based on elastic stability determines the location and character of homogeneously nucleated defects. We validate this stability criterion at both the atomistic and the continuum levels. We then propose a detailed interpretation of the experimentally observed sequence of displacement bursts to elucidate the role of secondary defect sources operating locally at stress levels considerably smaller than the ideal strength required for homogeneous nucleation. These findings provide a self-consistent explanation of the discontinuous elastic plastic response in nanoindentation measurements, and a guide to fundamental studies across many disciplines that seek to quantify and predict the initiation and early stages of plasticity.  相似文献   

13.
Three arylamide-bridged biscoumarin derivatives 1–3 have been designed and prepared. Compounds 1 and 2 are induced by the intramolecular N—H…O and N—H…F hydrogen bonding to possess a helical conformation, and 3 is induced to have an extended conformation. A comparison of their absorption and fluorescent spectra in a variety of solvents of a wide range of polarity with those of control compound 4 reveals that, for foldamers 1 and 2, the intramolecular hydrogen bonding and the helical conformations exist in most solvents, but do not exist or are very weak in DMF and DMSO.  相似文献   

14.
Y Yamada  G Liau  M Mudryj  S Obici  B de Crombrugghe 《Nature》1984,310(5975):333-337
Type III collagen is often found in the same tissues as type I collagen, yet the function and nature of the fibrils formed by the two collagens differ markedly. To understand the evolutionary history of the collagen gene family in more detail, we isolated the gene for type III collagen and compared its structure with that of the gene for alpha 2(I) collagen. This comparison points to a remarkable conservation in the size distribution of the exons coding for the helical part of these two collagen polypeptides: equivalent amino acid segments in the helical domain of each polypeptide are encoded by exons of equal sizes in each gene. This suggests that after the interstitial collagen genes had been duplicated from a common ancestor about 2-5 X 10(8) years ago, no recombinations between these exons were tolerated, although the same recombinational phenomena must have played an important part in shaping the structure of the progenitor for these genes. This fixation of the size distribution of the exons which code for the interstitial collagen helical domains is found despite the persistence in these exons of sequence elements that should have favoured recombinational rearrangements, and contrasts with the variations in the pattern of sizes of some exons coding for the amino and carboxyl propeptides of these collagens.  相似文献   

15.
采用密度泛函理论(DFT)B3LYP/6-31G**方法研究了二氯三苯基磷在分子势能超曲面上的4种稳定结构,计算了结构Ⅰ-Ⅳ的能量、红外及拉曼光谱、原子的化学位移和耦合常数,并作了频率分析,确认存在离子态的四配位磷化合物和三角双锥型的五配位磷化合物.结构Ⅰ,Ⅲ,Ⅳ是能量的最低点,没有虚频,结构Ⅱ有一个虚频,是一鞍点的过渡态,鞍点结构具有Cl—P—Cl三重轴,3个苯环共平面,结构Ⅲ也有Cl—P—Cl三重轴,苯环呈扭曲螺旋状,能量最低,结构Ⅰ呈离子态、松散状结构,结构Ⅳ呈尖塔状,苯基取螺旋型,为四配位闸型结构,是一复杂的电荷转移体.  相似文献   

16.
Gröbner G  Burnett IJ  Glaubitz C  Choi G  Mason AJ  Watts A 《Nature》2000,405(6788):810-813
Photo-isomerization of the 11-cis retinal chromophore activates the mammalian light-receptor rhodopsin, a representative member of a major superfamily of transmembrane G-protein-coupled receptor proteins (GPCRs) responsible for many cell signal communication pathways. Although low-resolution (5 A) electron microscopy studies confirm a seven transmembrane helix bundle as a principal structural component of rhodopsin, the structure of the retinal within this helical bundle is not known in detail. Such information is essential for any theoretical or functional understanding of one of the fastest occurring photoactivation processes in nature, as well as the general mechanism behind GPCR activation. Here we determine the three-dimensional structure of 11-cis retinal bound to bovine rhodopsin in the ground state at atomic level using a new high-resolution solid-state NMR method. Significant structural changes are observed in the retinal following activation by light to the photo-activated M(I) state of rhodopsin giving the all-trans isomer of the chromophore. These changes are linked directly to the activation of the receptor, providing an insight into the activation mechanism of this class of receptors at a molecular level.  相似文献   

17.
X-ray analysis of the pancreatic hormone glucagon shows that in crystals the polypeptide adopts a mainly helical conformation, which is stabilised by hydrophobic interactions between molecules related by threefold symmetry. A model is presented in which the glucagon molecule exists in dilute solutions as an equilibrium population of conformers with little retention of conformers with little retention of structure, and in which the helical conformation is stablised by hydrophobic interactions either as an oligomer or as a complex with the receptor.  相似文献   

18.
Structure refined to 2A of a nicked DNA octanucleotide complex with DNase I   总被引:46,自引:0,他引:46  
D Suck  A Lahm  C Oefner 《Nature》1988,332(6163):464-468
The cutting rates of bovine pancreatic deoxyribonuclease I (DNase I) vary along a given DNA sequence, indicating that the enzyme recognizes sequence-dependent structural variations of the DNA double-helix. In an attempt to define the helical parameters determining this sequence-dependence, we have co-crystallized a complex of DNase I with a self-complementary octanucleotide and refined the crystal structure at 2 A resolution. This structure confirms the basic features of an early model, namely that an exposed loop of DNase I binds in the minor groove of B-type DNA and that interactions do occur with the backbone of both strands. Nicked octamer duplexes that have lost a dinucleotide from the 3'-end of one strand are hydrogen-bonded across a two-fold axis in the crystal to form a quasi-continuous double helix of 14 base pairs. The DNA 14-mer has a B-type conformation and shows substantial distortion of both local and overall helix parameters, induced mainly by the tight interaction of Y73 and R38 in the unusually wide minor groove. Directly coupled to the widening of the groove by approximately 3A is a 21.5 degree bend of the DNA away from the bound enzyme towards the major groove, suggesting that both DNA stiffness and groove width are important in determining the sequence-dependence of the enzyme cutting rate. A second cut of the DNA which is induced by diffusion of Mn2+ into the co-crystals suggests that there are two active sites in DNase I separated by more than 15A.  相似文献   

19.
D Suck  C Oefner 《Nature》1986,321(6070):620-625
Bovine pancreatic deoxyribonuclease I (DNase I), an endonuclease that degrades double-stranded DNA in a nonspecific but sequence-dependent manner, has been used as a biochemical tool in various reactions, in particular as a probe for the structure of chromatin and for the helical periodicity of DNA on the nucleosome and in solution. Limited digestion by DNase I, termed DNase I 'footprinting', is routinely used to detect protected regions in DNA-protein complexes. Recently, we have solved the three-dimensional structure of this glycoprotein (relative molecular mass 30,400) by X-ray structure analysis at 2.5 A resolution and have subsequently refined it crystallographically at 2.0 A. Based on the refined structure and the binding of Ca2+-thymidine 3',5'-diphosphate (Ca-pTp) at the active site, we propose a mechanism of action and present a model for the interaction of DNase I with double-stranded DNA that involves the binding of an exposed loop region in the minor groove of B-DNA and electrostatic interactions of phosphates from both strands with arginine and lysine residues on either side of this loop. We explain DNase I cleavage patterns in terms of this model and discuss the consequences of the extended DNase I-DNA contact region for the interpretation of DNase I footprinting results.  相似文献   

20.
Y Zhou  M Karplus 《Nature》1999,401(6751):400-403
The detailed mechanism of protein folding is one of the major problems in structural biology. Its solution is of practical as well as fundamental interest because of its possible role in utilizing the many sequences becoming available from genomic analysis. Although the Levinthal paradox (namely, that a polypeptide chain can find its unique native state in spite of the astronomical number of configurations in the denatured state) has been resolved, the reasons for the differences in the folding behaviour of individual proteins remain to be elucidated. Here a Calpha-based three-helix-bundle-like protein model with a realistic thermodynamic phase diagram is used to calculate several hundred folding trajectories. By varying a single parameter, the difference between the strength of native and non-native contacts, folding is changed from a diffusion-collision mechanism to one that involves simultaneous collapse and partial secondary-structure formation, followed by reorganization to the native structure. Non-obligatory intermediates are important in the former, whereas there is an obligatory on-pathway intermediate in the latter. Our results provide a basis for understanding the range of folding behaviour that is observed in helical proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号