首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Touch and mechanical pain are first detected at our largest sensory surface, the skin. The cell bodies of sensory neurons that detect such stimuli are located in the dorsal root ganglia, and subtypes of these neurons are specialized to detect specific modalities of mechanical stimuli. Molecules have been identified that are necessary for mechanosensation in invertebrates but so far not in mammals. In Caenorhabditis elegans, mec-2 is one of several genes identified in a screen for touch insensitivity and encodes an integral membrane protein with a stomatin homology domain. Here we show that about 35% of skin mechanoreceptors do not respond to mechanical stimuli in mice with a mutation in stomatin-like protein 3 (SLP3, also called Stoml3), a mammalian mec-2 homologue that is expressed in sensory neurons. In addition, mechanosensitive ion channels found in many sensory neurons do not function without SLP3. Tactile-driven behaviours are also impaired in SLP3 mutant mice, including touch-evoked pain caused by neuropathic injury. SLP3 is therefore indispensable for the function of a subset of cutaneous mechanoreceptors, and our data support the idea that this protein is an essential subunit of a mammalian mechanotransducer.  相似文献   

2.
J Dodd  D Solter  T M Jessell 《Nature》1984,311(5985):469-472
Dorsal root ganglion (DRG) neurones transmit cutaneous sensory information from the periphery to the spinal cord. Within the dorsal horn of the spinal cord, classes of sensory fibres that are activated by different cutaneous stimuli terminate in separate and highly restricted laminae. Although the developmental events resulting in the laminar organization of sensory afferent terminals have not been defined, it is likely that interactions between surface molecules on DRG and dorsal horn neurones are involved in the generation of afferent synaptic connections. The identification of surface antigens that distinguish functional subclasses of DRG neurones would represent a first step in establishing the existence and nature of such molecules. We report here that monoclonal antibodies directed against carbohydrate differentiation antigens identify cytoplasmic and cell surface molecules expressed selectively by functional subsets of DRG neurons.  相似文献   

3.
S P Hunt  A Pini  G Evan 《Nature》1987,328(6131):632-634
It has been suggested that the proto-oncogenes c-fos and c-myc participate in the control of genetic events which lead to the establishment of prolonged functional changes in neurons. Expression of c-fos and c-myc are among the earliest genetic events induced in cultured fibroblast and phaeochromocytoma cell lines by various stimuli including growth factors, peptides and the intracellular second messengers diacylglycerol, cAMP and Ca2+. We report here that physiological stimulation of rat primary sensory neurons causes the expression of c-fos-protein-like immunoreactivity in nuclei of postsynaptic neurons of the dorsal horn of the spinal cord. Activation of small-diameter cutaneous sensory afferents by noxious heat or chemical stimuli results in the rapid appearance of c-fos-protein-like immunoreactivity in the superficial layers of the dorsal horn. However, activation of low-threshold cutaneous afferents results in fewer labelled cells with a different laminar distribution. No c-fos induction was seen in the dorsal root ganglia, gracile nucleus or ventral horn. Thus, synaptic transmission may induce rapid changes in gene expression in certain postsynaptic neurons.  相似文献   

4.
Doiron B  Chacron MJ  Maler L  Longtin A  Bastian J 《Nature》2003,421(6922):539-543
Stimulus-induced oscillations occur in visual, olfactory and somatosensory systems. Several experimental and theoretical studies have shown how such oscillations can be generated by inhibitory connections between neurons. But the effects of realistic spatiotemporal sensory input on oscillatory network dynamics and the overall functional roles of such oscillations in sensory processing are poorly understood. Weakly electric fish must detect electric field modulations produced by both prey (spatially localized) and communication (spatially diffuse) signals. Here we show, through in vivo recordings, that sensory pyramidal neurons in these animals produce an oscillatory response to communication-like stimuli, but not to prey-like stimuli. On the basis of well-characterized circuitry, we construct a network model of pyramidal neurons that predicts that diffuse delayed inhibitory feedback is required to achieve oscillatory behaviour only in response to communication-like stimuli. This prediction is experimentally verified by reversible blockade of feedback inhibition that removes oscillatory behaviour in the presence of communication-like stimuli. Our results show that a sensory system can use inhibitory feedback as a mechanism to 'toggle' between oscillatory and non-oscillatory firing states, each associated with a naturalistic stimulus.  相似文献   

5.
A neuronal mechanism for sensory gating during locomotion in a vertebrate   总被引:6,自引:0,他引:6  
K T Sillar  A Roberts 《Nature》1988,331(6153):262-265
The response of the foot to touch during walking depends on whether it is in the air or on the ground. In most animals, reflex responses to external stimuli are similarly adapted to their timing in the locomotor cycle, but there is only fragmentary information about the neural mechanisms involved. In arthropods, reflex modulation can occur in the sensory receptors themselves and in neurons that discharge during locomotion. By recording with dye-filled microelectrodes from neurons in the spinal cord of frog embryos, we describe reflex modulation at the level of sensory interneurons. Sensory inputs from skin receptors excite a specific class of spinal sensory interneuron whose activity leads to reflex bending of the body away from the stimulus. During swimming, these inputs are gated by rhythmic postsynaptic inhibition, so that sensory drive reaches motor neurons only at phases in the locomotor cycle when the resulting contraction would likewise turn the embryo away from the stimulated side. Such gating of sensory pathways could be a general feature of all locomotor systems where responses to sensory stimuli need to be adapted to the phase of locomotion.  相似文献   

6.
Evidence for a central component of post-injury pain hypersensitivity   总被引:50,自引:0,他引:50  
C J Woolf 《Nature》1983,306(5944):686-688
Noxious skin stimuli which are sufficiently intense to produce tissue injury, characteristically generate prolonged post-stimulus sensory disturbances that include continuing pain, an increased sensitivity to noxious stimuli and pain following innocuous stimuli. This could result from either a reduction in the thresholds of skin nociceptors (sensitization) or an increase in the excitability of the central nervous system so that normal inputs now evoke exaggerated responses. Because sensitization of peripheral receptors occurs following injury, a peripheral mechanism is widely held to be responsible for post-injury hypersensitivity. To investigate this I have now developed an animal model where changes occur in the threshold and responsiveness of the flexor reflex following peripheral injury that are analogous to the sensory changes found in man. Electrophysiological analysis of the injury-induced increase in excitability of the flexion reflex shows that it in part arises from changes in the activity of the spinal cord. The long-term consequences of noxious stimuli result, therefore, from central as well as from peripheral changes.  相似文献   

7.
A capsaicin-receptor homologue with a high threshold for noxious heat   总被引:60,自引:0,他引:60  
Caterina MJ  Rosen TA  Tominaga M  Brake AJ  Julius D 《Nature》1999,398(6726):436-441
  相似文献   

8.
Rancz EA  Ishikawa T  Duguid I  Chadderton P  Mahon S  Häusser M 《Nature》2007,450(7173):1245-1248
Understanding the transmission of sensory information at individual synaptic connections requires knowledge of the properties of presynaptic terminals and their patterns of firing evoked by sensory stimuli. Such information has been difficult to obtain because of the small size and inaccessibility of nerve terminals in the central nervous system. Here we show, by making direct patch-clamp recordings in vivo from cerebellar mossy fibre boutons-the primary source of synaptic input to the cerebellar cortex-that sensory stimulation can produce bursts of spikes in single boutons at very high instantaneous firing frequencies (more than 700 Hz). We show that the mossy fibre-granule cell synapse exhibits high-fidelity transmission at these frequencies, indicating that the rapid burst of excitatory postsynaptic currents underlying the sensory-evoked response of granule cells can be driven by such a presynaptic spike burst. We also demonstrate that a single mossy fibre can trigger action potential bursts in granule cells in vitro when driven with in vivo firing patterns. These findings suggest that the relay from mossy fibre to granule cell can act in a 'detonator' fashion, such that a single presynaptic afferent may be sufficient to transmit the sensory message. This endows the cerebellar mossy fibre system with remarkable sensitivity and high fidelity in the transmission of sensory information.  相似文献   

9.
Komura Y  Tamura R  Uwano T  Nishijo H  Kaga K  Ono T 《Nature》2001,412(6846):546-549
Reward is important for shaping goal-directed behaviour. After stimulus-reward associative learning, an organism can assess the motivational value of the incoming stimuli on the basis of past experience (retrospective processing), and predict forthcoming rewarding events (prospective processing). The traditional role of the sensory thalamus is to relay current sensory information to cortex. Here we find that non-primary thalamic neurons respond to reward-related events in two ways. The early, phasic responses occurred shortly after the onset of the stimuli and depended on the sensory modality. Their magnitudes resisted extinction and correlated with the learning experience. The late responses gradually increased during the cue and delay periods, and peaked just before delivery of the reward. These responses were independent of sensory modality and were modulated by the value and timing of the reward. These observations provide new evidence that single thalamic neurons can code for the acquired significance of sensory stimuli in the early responses (retrospective coding) and predict upcoming reward value in the late responses (prospective coding).  相似文献   

10.
Froemke RC  Merzenich MM  Schreiner CE 《Nature》2007,450(7168):425-429
Receptive fields of sensory cortical neurons are plastic, changing in response to alterations of neural activity or sensory experience. In this way, cortical representations of the sensory environment can incorporate new information about the world, depending on the relevance or value of particular stimuli. Neuromodulation is required for cortical plasticity, but it is uncertain how subcortical neuromodulatory systems, such as the cholinergic nucleus basalis, interact with and refine cortical circuits. Here we determine the dynamics of synaptic receptive field plasticity in the adult primary auditory cortex (also known as AI) using in vivo whole-cell recording. Pairing sensory stimulation with nucleus basalis activation shifted the preferred stimuli of cortical neurons by inducing a rapid reduction of synaptic inhibition within seconds, which was followed by a large increase in excitation, both specific to the paired stimulus. Although nucleus basalis was stimulated only for a few minutes, reorganization of synaptic tuning curves progressed for hours thereafter: inhibition slowly increased in an activity-dependent manner to rebalance the persistent enhancement of excitation, leading to a retuned receptive field with new preference for the paired stimulus. This restricted period of disinhibition may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.  相似文献   

11.
Discriminating among sensory stimuli is critical for animal survival. This discrimination is particularly essential when evaluating whether a stimulus is noxious or innocuous. From insects to humans, transient receptor potential (TRP) channels are key transducers of thermal, chemical and other sensory cues. Many TRPs are multimodal receptors that respond to diverse stimuli, but how animals distinguish sensory inputs activating the same TRP is largely unknown. Here we determine how stimuli activating Drosophila TRPA1 are discriminated. Although Drosophila TRPA1 responds to both noxious chemicals and innocuous warming, we find that TRPA1-expressing chemosensory neurons respond to chemicals but not warmth, a specificity conferred by a chemosensory-specific TRPA1 isoform with reduced thermosensitivity compared to the previously described isoform. At the molecular level, this reduction results from a unique region that robustly reduces the channel's thermosensitivity. Cell-type segregation of TRPA1 activity is critical: when the thermosensory isoform is expressed in chemosensors, flies respond to innocuous warming with regurgitation, a nocifensive response. TRPA1 isoform diversity is conserved in malaria mosquitoes, indicating that similar mechanisms may allow discrimination of host-derived warmth--an attractant--from chemical repellents. These findings indicate that reducing thermosensitivity can be critical for TRP channel functional diversification, facilitating their use in contexts in which thermal sensitivity can be maladaptive.  相似文献   

12.
Involuntary orienting to sound improves visual perception   总被引:10,自引:0,他引:10  
To perceive real-world objects and events, we need to integrate several stimulus features belonging to different sensory modalities. Although the neural mechanisms and behavioural consequences of intersensory integration have been extensively studied, the processes that enable us to pay attention to multimodal objects are still poorly understood. An important question is whether a stimulus in one sensory modality automatically attracts attention to spatially coincident stimuli that appear subsequently in other modalities, thereby enhancing their perceptual salience. The occurrence of an irrelevant sound does facilitate motor responses to a subsequent light appearing nearby. However, because participants in previous studies made speeded responses rather than psychophysical judgements, it remains unclear whether involuntary auditory attention actually affects the perceptibility of visual stimuli as opposed to postperceptual decision and response processes. Here we provide psychophysical evidence that a sudden sound improves the detectability of a subsequent flash appearing at the same location. These data show that the involuntary orienting of attention to sound enhances early perceptual processing of visual stimuli.  相似文献   

13.
通过微认知加工研究方法,探究了视觉感觉记忆的信息加工过程及其与TCE效应和Broca-Sulzer效应的相关性.实验证明:对于相继呈现在相同空间位置上的信号,视觉感觉记忆并非只是登记,还要对它们进行亮度上的叠加、衰减加工;TCE效应和Broca-Sulzer效应都是这种加工的结果.因此,TCE效虚和Broca-Sulzer效应足机制相同的同一的效应.  相似文献   

14.
Harley HE  Putman EA  Roitblat HL 《Nature》2003,424(6949):667-669
How organisms (including people) recognize distant objects is a fundamental question. The correspondence between object characteristics (distal stimuli), like visual shape, and sensory characteristics (proximal stimuli), like retinal projection, is ambiguous. The view that sensory systems are 'designed' to 'pick up' ecologically useful information is vague about how such mechanisms might work. In echolocating dolphins, which are studied as models for object recognition sonar systems, the correspondence between echo characteristics and object characteristics is less clear. Many cognitive scientists assume that object characteristics are extracted from proximal stimuli, but evidence for this remains ambiguous. For example, a dolphin may store 'sound templates' in its brain and identify whole objects by listening for a particular sound. Alternatively, a dolphin's brain may contain algorithms, derived through natural endowments or experience or both, which allow it to identify object characteristics based on sounds. The standard method used to address this question in many species is indirect and has led to equivocal results with dolphins. Here we outline an appropriate method and test it to show that dolphins extract object characteristics directly from echoes.  相似文献   

15.
Sensory nerve fibres can detect changes in temperature over a remarkably wide range, a process that has been proposed to involve direct activation of thermosensitive excitatory transient receptor potential (TRP) ion channels. One such channel--TRP melastatin 8 (TRPM8) or cold and menthol receptor 1 (CMR1)--is activated by chemical cooling agents (such as menthol) or when ambient temperatures drop below approximately 26 degrees C, suggesting that it mediates the detection of cold thermal stimuli by primary afferent sensory neurons. However, some studies have questioned the contribution of TRPM8 to cold detection or proposed that other excitatory or inhibitory channels are more critical to this sensory modality in vivo. Here we show that cultured sensory neurons and intact sensory nerve fibres from TRPM8-deficient mice exhibit profoundly diminished responses to cold. These animals also show clear behavioural deficits in their ability to discriminate between cold and warm surfaces, or to respond to evaporative cooling. At the same time, TRPM8 mutant mice are not completely insensitive to cold as they avoid contact with surfaces below 10 degrees C, albeit with reduced efficiency. Thus, our findings demonstrate an essential and predominant role for TRPM8 in thermosensation over a wide range of cold temperatures, validating the hypothesis that TRP channels are the principal sensors of thermal stimuli in the peripheral nervous system.  相似文献   

16.
Chacron MJ  Doiron B  Maler L  Longtin A  Bastian J 《Nature》2003,423(6935):77-81
Animals have developed stereotyped communication calls to which specific sensory neurons are well tuned. These communication calls must be discriminated from environmental signals such as those produced by prey. Sensory systems might have evolved neural circuitry to encode both categories. In weakly electric fish, prey and communication signals differ in their spatial extent and frequency content. Here we show that stimuli of different spatial extents mimicking prey and communication signals cause a switch in the frequency tuning and spike-timing precision of electrosensory pyramidal neurons, resulting in the selective and optimal encoding of both stimulus categories. As in other sensory systems, pyramidal neurons respond only to stimuli located within a restricted region of space known as the classical receptive field (CRF). In some systems, stimulation outside the CRF but within a non-classical receptive field (nCRF) can modulate the neural response to CRF stimulation even though nCRF stimulation alone fails to elicit responses. We show that pyramidal neurons possess a nCRF and that it can modulate the response to CRF stimuli to induce this neurobiological switch in frequency tuning.  相似文献   

17.
Houweling AR  Brecht M 《Nature》2008,451(7174):65-68
Understanding how neural activity in sensory cortices relates to perception is a central theme of neuroscience. Action potentials of sensory cortical neurons can be strongly correlated to properties of sensory stimuli and reflect the subjective judgements of an individual about stimuli. Microstimulation experiments have established a direct link from sensory activity to behaviour, suggesting that small neuronal populations can influence sensory decisions. However, microstimulation does not allow identification and quantification of the stimulated cellular elements. The sensory impact of individual cortical neurons therefore remains unknown. Here we show that stimulation of single neurons in somatosensory cortex affects behavioural responses in a detection task. We trained rats to respond to microstimulation of barrel cortex at low current intensities. We then initiated short trains of action potentials in single neurons by juxtacellular stimulation. Animals responded significantly more often in single-cell stimulation trials than in catch trials without stimulation. Stimulation effects varied greatly between cells, and on average in 5% of trials a response was induced. Whereas stimulation of putative excitatory neurons led to weak biases towards responding, stimulation of putative inhibitory neurons led to more variable and stronger sensory effects. Reaction times for single-cell stimulation were long and variable. Our results demonstrate that single neuron activity can cause a change in the animal's detection behaviour, suggesting a much sparser cortical code for sensations than previously anticipated.  相似文献   

18.
Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro, the response properties of which were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the degree of functional specificity of local synaptic connections in the visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information.  相似文献   

19.
G T Finnerty  L S Roberts  B W Connors 《Nature》1999,400(6742):367-371
Many representations of sensory stimuli in the neocortex are arranged as topographic maps. These cortical maps are not fixed, but show experience-dependent plasticity. For instance, sensory deprivation causes the cortical area representing the deprived sensory input to shrink, and neighbouring spared representations to enlarge, in somatosensory, auditory or visual cortex. In adolescent and adult animals, changes in cortical maps are most noticeable in the supragranular layers at the junction of deprived and spared cortex. However, the cellular mechanisms of this experience-dependent plasticity are unclear. Long-term potentiation and depression have been implicated, but have not been proven to be necessary or sufficient for cortical map reorganization. Short-term synaptic dynamics have not been considered. We developed a brain slice preparation involving rat whisker barrel cortex in vitro. Here we report that sensory deprivation alters short-term synaptic dynamics in both vertical and horizontal excitatory pathways within the supragranular cortex. Moreover, modifications of horizontal pathways amplify changes in the vertical inputs. Our findings help to explain the functional cortical reorganization that follows persistent changes of sensory experience.  相似文献   

20.
L Liu  R Wolf  R Ernst  M Heisenberg 《Nature》1999,400(6746):753-756
The world is permanently changing. Laboratory experiments on learning and memory normally minimize this feature of reality, keeping all conditions except the conditioned and unconditioned stimuli as constant as possible. In the real world, however, animals need to extract from the universe of sensory signals the actual predictors of salient events by separating them from non-predictive stimuli (context). In principle, this can be achieved if only those sensory inputs that resemble the reinforcer in their temporal structure are taken as predictors. Here we study visual learning in the fly Drosophila melanogaster, using a flight simulator, and show that memory retrieval is, indeed, partially context-independent. Moreover, we show that the mushroom bodies, which are required for olfactory but not visual or tactile learning, effectively support context generalization. In visual learning in Drosophila, it appears that a facilitating effect of context cues for memory retrieval is the default state, whereas making recall context-independent requires additional processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号