首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
为了说明两态反应会影响甚至决定整个反应的反应速率或选择性,运用密度泛函(DFT)B3lyp/6-311+G(3df,2p)方法,对TiO催化CO2加氢生成甲酸反应的单、三重态各个驻点结构进行优化.发现在两个自旋态势能面之间有四处能量交叉点(CPs),由此找出最低能量交叉点(MECP),根据交叉点的构型计算自旋-轨道耦合(SOC)常数,用Landau-Zener非绝热跃迁公式计算出MECP处的跃迁几率,发现四处最低能量交叉点都具有较强的自旋-轨道耦合作用和较高的跃迁几率,且四个最低能量交叉点处电子的自旋翻转均发生在Ti原子不同的d轨道之间,确定了最低能量反应路径.用能量跨度模型计算了在298K下TiO的转化频率(TOF)及整个过程的控制度(XTOF),同时确定了整个反应过程中的决速态.  相似文献   

2.
运用密度泛函理论(DFT)B3LYP方法研究了单重态和三重态势能面自旋禁阻反应Zr活化2-丁炔分子的C—C和C—H键的反应机理.通过自旋-轨道耦合的计算讨论了势能面交叉点和可能的自旋翻转过程.反应从基态三重态开始,在活化C—C键的反应过程中出现了自旋态的改变,使得过渡态3 T4g的活化能垒从-3.58降到-10.60kJ·mol-1.在MECP4处,单重态和三重态间的自旋-轨道耦合常数为146.10cm-1,反应发生有效的系间窜越,从三重态跃迁到单重态势能面,反应势垒有所下降.  相似文献   

3.
采用密度泛函理论和高级电子相关耦合簇方法,在CCSD/6-311++G(3df,3pd)//B3LYP/6-311++G(3df,3pd)理论水平下,研究了两个自旋态下的Zr原子活化CH4分子中C—H键逐个夺取H原子的微观反应机理.通过计算,讨论了势能面交叉和可能的自旋翻转过程.用Harvey等的方法优化出最低能量交叉点(MECP),并计算了MECP处相应的自旋-轨道耦合常数(SOC),进一步讨论了Zr与CH4的反应中不同势能面之间的"系间窜越"(ISC)的可能性.  相似文献   

4.
采用密度泛函理论和高级电子相关耦合簇方法,在CCSD(T)/6-311++G(3df,3pd)//B3LYP/6-311+G(d,p)的理论水平下,研究了3个自旋态势能面上自旋禁阻反应Ir^+(^5F)+CH4(^1A1)→IrCH2^+(3A″)+H2(1Σg^+)的微观机理,通过自旋-轨道耦合的计算,讨论了势能面交叉和可能的自旋翻转过程.结果表明,Ir^+与CH4的反应中不同势能面之间的“系间窜越”(ISC)将会发生,分子体系通过3次自旋翻转沿着热力学最有利的反应路径进行,最优的反应路径总放热量为44.64 kJ/mol.运用Harvey等的方法优化出最低能量交叉点(MECP),并计算了MECP处相应的自旋-轨道耦合常数(SOC),分别为346.95,2 545.62,2 990.98 cm^-1,较大的SOC值说明了自旋翻转是有效的.  相似文献   

5.
通过使用密度泛函理论B3LYP的方法在二重态及四重态势能面上研究了金属簇阳离子Pd2+和Pd+活化甲烷的机理.使用局部优化的方法确定了高自旋与低自旋势能面之间的交叉点,同时,通过自旋轨道耦合值的计算研究了MECP点可能的自旋翻转过程.根据Landau-Zener公式计算出的电子跃迁几率,我们发现在MECP点发生了有效的系间窜越.计算表明Pd2+体系以自旋保守的方式反应在基态势能面上.得到的最终产物是卡宾和氢气,反应吸收11.84 kcal·mol-1的热量.Pd3+体系是两态反应,最终的反应产物是氢桥键分子和氢气,反应放热9.05 kcal· mol-1.研究表明Pd3+在室温下能自发地活化甲烷,而pd+活化甲烷在热力学和动力学上都是不利的过程,计算结果与实验的观察结果一致.  相似文献   

6.
采用密度泛函理论(DFT)B3LYP与耦合簇(CCSD)方法,研究了气相中四重态和六重态势能面上Fe+催化N2O氧化H2的微观机理.采用分子轨道理论和自然键轨道理论(NBO)对反应势能面进行分析,并通过自旋-轨道耦合(SOC)计算,讨论了势能面的交叉情况和自旋翻转的可能性.用Kozuch提出的能量跨度模型,确定了整个反应的决速过渡态(TDTS)和决速中间体(TDI),最后计算了催化剂的转化频率(TOF),以评价催化剂的性能.  相似文献   

7.
采用密度泛函理论中的UB3LYP方法研究了气相中二聚体Au_2~+在二重态与四重态势能面上催化CO+H_2O→CO_2+H_2的水煤气变换(WGS)循环反应的机理.二、四重态势能面上各个驻点的几何构型被全参数优化,同时对过渡态进行了频率分析,并使用内禀反应坐标(IRC)方法对其进行了验证,讨论了势能面的交叉情况.运用Kozuch的能量跨度模型对循环反应中催化剂的转化频率(f_(TO))进行了计算,同时对整个反应的决速态进行了确定.结果表明,二、四重态势能面之间没有交叉点;循环反应中决速过渡态(TDTS)是~2TS34,决速中间体(TDI)是2IM1;298.15K下整个反应的δE=237.6kJ·mol~(-1),fTO=1.440×10~(-29) s~(-1).  相似文献   

8.
为了理解Zr_2O_4~+在催化CO与N_2O的反应中所表现出的优异的催化性能,文中通过采用密度泛函理论(DFT)在B3LYP/TZVP∪LANL2DZ水平上的计算,分析解释了二重态势能面上Zr_2O_4~+氧化CO和Zr2O+3还原N2O两步反应的氧转移过程机理.运用Kozuch提出的能量跨度模型(ESM)计算了在298K下Zr_2O_4~+的转化频率(fTO)及整个过程的控制度(XTOF),证实了催化剂Zr_2O_4~+在整个反应中优异的催化性能.  相似文献   

9.
运用密度泛函DFT//CCSD(T)//B3LYP/6-311G(2d,p)的方法对FeO+2+H2生成产物[Fe O++H_2O]的反应的微观机理进行了研究,探索了发生在四重态和六重态两个势能面上的反应通道,揭示了Fe O+2活化H-Hσ键的微观机理。研究结果表明:该反应是一个放热反应,在反应过程中发生了势能面交叉现象,在整个反应路径中发生了两次自旋翻转的现象,属于Hammond假设的第四种情况;自旋翻转在整个反应过程中起了关键作用,且在很大程度上影响了反应效率和反应速率。  相似文献   

10.
通过束流能量为94MeV的熔合蒸发反应154Sm(19F,5n)168Lu布居了双奇核168Lu的高自旋态,发现一条新转动带,将其指定为建立在π7/2+[404]υ5/2-[523]基态上的转动带,并发现了π7/2+[404]υ5/2+[642]和π9/2-[514]υ5/2+[642]转动带同低激发态间的连接关系,确定了转动带的自旋.  相似文献   

11.
设G为有限群,o1(G)表示G中最高阶元素的阶.用极少的数量刻画有限单群是单群刻画领域中一个有趣的课题.本文只用群的阶及最高阶元素的阶刻画了单K3-群L3(3)和U3(3),即证明了:设G为有限群,M为单K3-群L3(3)和U3(3),则G≌M当且仅当|G|=|M|,且o1(G) =o1 (M).  相似文献   

12.
不定方程x^3+y^3+z^3=3的整数解问题是一个较古老且未得到完全解决的问题,在已找到的整数解中可发现,均有两个未知数的解相等.对于在两个未知数相等的情况下有无整数解进行一定的研究和推进,并且证明了x^3+y^3+z^3=3的解存在的形式.  相似文献   

13.
14.
探讨了以3-羟基-3-甲基丁炔为原料合成3-氯-3-甲基丁炔的工艺,并考察了反应条件对3-氯-3-甲基丁炔收率的影响.通过正交实验确定了最佳工艺条件:3-羟基-3-甲基丁炔23.5 g,浓盐酸28 mL,浓硫酸18 mL,反应温度30 ℃,催化剂ZnCl2 2 g,该合成工艺收率可达83%以上.  相似文献   

15.
采用光谱测量技术分析了CH3NH3PbI3薄膜的光致发光增强效应及其对载流子复合动力学的影响.实验结果表明,增加光浴功率密度有助于提高薄膜的光致发光增强速率,O2环境有利于薄膜的光致发光增强.CH3NH3PbI3薄膜光浴处理引入的光致发光增强效应源于薄膜内缺陷态浓度降低.同时利用微波吸收介电谱技术,表征了CH3NH3PbI3薄膜光浴前后,自由载流子和浅能级束缚载流子的复合动力学.发现光浴后,薄膜的自由载流子和浅能级束缚载流子浓度明显提高.  相似文献   

16.
3p^3阶群之构造   总被引:2,自引:0,他引:2  
在有限群理论中,确定n阶群的构造是一个分类问题。本文试图确定3p~3(p是奇素数,且p≠3)阶群的构造,即证明下面的定理: 令p是一个素数,则3p~3(p≠3)阶群有 (1)7种类型,当p≠1(mod3)。 (2)19种类型,当p=1(mod3)。  相似文献   

17.
3   总被引:22,自引:0,他引:22  
  相似文献   

18.
3   总被引:3,自引:0,他引:3  
根据唯象自旋哈密顿和微观相互作用之间的近似等效性,本文导出了3d  相似文献   

19.
主要讨论了方程nxyzzyx=- 3333的性质,并给出了几种特殊形式的解。  相似文献   

20.
设G为有限群,o1(G)表示G中最高阶元素的阶。用极少的数量刻画有限单群是单群刻画领域中一个有趣的课题。本文只用群的阶及最高阶元素的阶刻画了单K3-群L3(3)和U3(3),即证明了: 设G为有限群, M 为单K3-群L3(3)和U3(3),则GM当且仅当|G|=|M|,且o1(G)=o1(M)。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号