首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
通过考察污泥调理过程中滤饼含水率、束缚水含量变化、EPS各层组分分布、傅里叶红外光谱等指标,研究表面活性剂作用下,胞外聚合物分布与束缚水含量的变化关系。研究结果表明:十二烷基二甲基苄基氯化铵(1227)的加入导致污泥中紧密结合的胞外聚合物(TB-EPS)含量降低,松散结合的胞外聚合物(LB-EPS)、黏液层胞外聚合物(S-EPS)含量升高,有效降低束缚水的含量,提高了污泥脱水效果。表面活性剂投加量为75 mg·g-1时,污泥中束缚水含量降至1.58 g·g-1,污泥滤饼含水率降至65.78%。在表面活性剂作用下,部分EPS水解生成小分子有机物,S-EPS中有机官能团的总量和种类都有明显增多。TB-EPS占污泥中EPS总量的大部分,其中,蛋白质、多糖与束缚水存在显著的正相关性,是影响污泥束缚水含量的主要因素。  相似文献   

2.
研究了不同pH值下污泥脱水性能和束缚水含量的变化,通过测定污泥调理过程中各层胞外聚合物( S-EPS、LB-EPS和TB-EPS)中蛋白质和多糖的含量、S-EPS中有机官能团以及有机酸的含量,探讨了胞外聚合物对污泥脱水性能及束缚水含量的影响.酸性条件下,污泥的脱水性能明显好于中性条件,并且pH值为3.03时,污泥滤饼含水率( WC)和毛细吸水时间( CST)均降至最低,分别为60.8%和25.4 s;碱性条件下,污泥中束缚水的含量明显增加,WC和CST均大幅升高,污泥脱水性能恶化.酸碱的加入导致污泥中TB-EPS含量降低,LB-EPS和S-EPS含量升高,并且EPS各层组均与WC、CST以及束缚水含量具有很强的相关性,其中S-EPS与污泥脱水性能以及束缚水含量的相关性最显著.酸碱调理过程中,部分EPS水解生成有机酸等小分子有机物,S-EPS中有机官能团的总量和种类都有明显增多.  相似文献   

3.
为改善污泥脱水性能并比较不同调理方法的优劣,采用絮凝、Fenton氧化及Fenton-絮凝联合对城市污水处理厂剩余污泥进行调理。研究以滤饼含水率、污泥比阻(SRF)、上清液浊度、胞外聚合物(EPS)作为评价指标,综合考察试剂投加量、反应时间、污泥pH等因素对污泥脱水性能的影响及其最佳条件。结果表明:在H_2O_2、Fe~(2+)的投加量分别为4 g/L、30 mg/L,Fenton反应时间为60 min时,Fenton氧化对污泥絮体的破解效果最佳。该最佳Fenton反应条件下进行污泥絮凝调理,投加CPAM 60 mg/L、调节初始pH为5,污泥调理效果最佳,使得滤饼含水率、上清液浊度、SRF分别降低了24.56%、42.12%、66.67%。Fenton-絮凝联合调理对于污泥脱水性能的改善显然优于单独絮凝调理。Fenton试剂可通过强氧化作用有效破解污泥絮体的EPS,进而有效降低污泥含水率;CPAM的絮凝作用使污泥比阻大大降低,提高了污泥脱水性能。  相似文献   

4.
对石化企业污水处理厂含油污泥脱水性能进行研究,首先使用石油醚对其进行油水分离处理,真空抽滤后,测试滤饼的含水率,以含水率作为判别指标.探究生物质、臭氧和超声调理3种方式,单一及复合调理对污泥脱水性能的影响.结果表明:3种方式单一调理最佳参数,先进行臭氧化,臭氧的最佳投加量为0.1g/g,滤饼含水率为82.45%;再进行超声处理,28kHz时间超声波作用最佳为2min,滤饼含水率为74.61%;生物质与污泥干物质量比为2.5%时,滤饼含水率为62.7%;复合调理参数为臭氧投加量0.1g/g,超声波时间2min,生物质与污泥干质比为2%时,滤饼的含水率达到59.76%.复合调理效果优于单一调理,调理后污泥能够自持燃烧.  相似文献   

5.
通过对污泥离心过滤脱水后含水率及毛细吸水时间(CST)的测定,考察了生物表面活性剂鼠李糖脂及其与阳离子化学表面活性剂溴化十六烷基三甲铵(CTAB)复配对活性污泥脱水性能的影响.当鼠李糖脂投加量为0.10g·g-1时,相比于原污泥,离心脱水污泥含水率下降了2.4%,过滤滤饼含水率下降了10.8%;CST值却由27.3s升至48.8s.研究结果说明:鼠李糖脂的投加能显著降低污泥脱水后污泥的含水率,但却会使污泥脱水速率变慢.相比于单独使用鼠李糖脂或CTAB,鼠李糖脂与CTAB以1∶1,1∶2或1∶3复配时不仅使脱水后污泥含水率更低,而且对污泥脱水速率也有改善作用.  相似文献   

6.
对石化企业污水处理厂含油污泥脱水性能进行研究,首先使用石油醚对其进行油水分离处理,真空抽滤后,测试滤饼的含水率,以含水率作为判别指标.探究生物质、臭氧和超声调理3种方式,单一及复合调理对污泥脱水性能的影响.结果表明:3种方式单一调理最佳参数,先进行臭氧化,臭氧的最佳投加量为0.1g/g,滤饼含水率为82.45%;再进行超声处理,28kHz时间超声波作用最佳为2min,滤饼含水率为74.61%;生物质与污泥干物质量比为2.5%时,滤饼含水率为62.7%;复合调理参数为臭氧投加量0.1g/g,超声波时间2min,生物质与污泥干质比为2%时,滤饼的含水率达到59.76%.复合调理效果优于单一调理,调理后污泥能够自持燃烧.  相似文献   

7.
聚丙酰胺在提高污泥脱水性能方面效果显著,且运用广泛。该文研究不同型号的阳离子聚丙烯酰胺(CPAM)对污泥脱水性能的影响。通过测定不同CPAM调理后,观察滤饼含水率变化和胞外聚合物(EPS)含量变化,从而探究CPAM对污泥的脱水机理。研究发现,高分子量和高离子度的CPAM能降低滤饼含水率,同时,在CPAM吸附架桥和电性中和协同作用下能有效破坏EPS。  相似文献   

8.
浓缩污泥中胞外聚合物组分与脱水性的关系   总被引:4,自引:0,他引:4  
为研究浓缩污泥中胞外聚合物的组分(蛋白质和多糖) 对污泥脱水性的影响, 对添加和未添加腐殖土的浓缩污泥进行21天的高温(55℃) 厌氧消化试验。通过离心和热提取的方法分别提取浓缩污泥中的溶解态胞外聚合物(dissolve-EPS)及结合态胞外聚合物(bound-EPS),并对污泥的溶解态和结合态的胞外聚合物以及脱水性(毛细吸水时间表征) 进行跟踪监测。结果表明, 高温厌氧消化过程中, 污泥毛细吸水时间随时间的增加逐渐增大。统计分析结果表明, 污泥毛细吸水时间与溶解态蛋白质和多糖有显著地正相关(0.868, 0.959), 与结合态蛋白质和多糖有显著地负相关(-0.783, -0.831)。厌氧消化21天后, 添加腐殖土的污泥中溶解态多糖比未添加的低 7% 左右, 而溶解态蛋白质、结合态蛋白质和多糖没有明显变化。添加腐殖土的污泥毛细吸水时间比未添加的降低了25% , 这表明, 污泥中溶解态多糖对污泥的脱水性起主要作用。  相似文献   

9.
以污泥比阻(SRF)、泥饼含水率和毛细吸水时间(CST)作为参考指标,系统探讨了微波耦合Fe~0/H_2O_2(MW-Fe~0/H_2O_2)类芬顿反应中初始pH值、微波功率、反应时间、H_2O_2投加量与Fe~0投加量等因素对剩余污泥脱水性能的影响,并通过类比实验阐述了MW-Fe~0/H_2O_2改善污泥脱水性能的作用机理。结果表明:当初始pH值为3、微波功率为400 W、反应时间为150 s、H_2O_2投加量为90 mg/g、Fe~0投加量为60 mg/g时,污泥的脱水性能达到最佳,此时,SRF、泥饼含水率和CST分别降低了90.5%,15.5%和63.3%。污泥胞外聚合物(EPS)组分分析结果表明,紧密型胞外聚合物(TB-EPS)中蛋白质和糖类的减少与污泥脱水性能提高正相关。三维荧光光谱(3D-EEM)显示,TB-EPS中溶解性微生物副产物和色氨酸类蛋白被氧化降解,有利于改善污泥的脱水性能。  相似文献   

10.
研究了PUWU、高铁酸钾和脱硫灰单因素及耦合作用对污泥脱水性能的影响。在单因素实验结果的基础上,通过曲面响应优化,建立毛细吸水时间(CST)和污泥沉降比(SV)的二次多项式预测模型和方差分析,得到三因素耦合调理污泥最优值:在PUWU(脉冲条件:微波功率540 W、超声波功率3 W、紫外线(253.7nm)处理时间、高铁酸钾和脱硫灰投加量分别为35 s、1.25 mL/100 mL和2 g/100 mL的条件下处理的污泥脱水性能最佳。此外,通过污泥颗粒粒径以及电镜观察(SEM)分析对最佳结果进一步验证,提高了实验方法的可信度。  相似文献   

11.
以丙烯酰胺(AM)、 丙烯酸(AA)和硫酸铝为原料, 采用水溶液聚合法合成Al3+复合高分子絮凝剂(PAM-AA). 通过正交实验确定最佳聚合条件为: m(AM)∶m(AA)=5∶3, 反应温度为65 ℃, 搅拌时间5 h, 引发剂的加入量占单体质量3%, 产率可达96.3%. 在此基础上合成Ca2+,Mg2+和Fe3+复合高分子絮凝剂, 利用红外光谱(IR)、 X射线衍射(XRD)、 扫描电子显微镜(SEM)等方法对产物的结构和形貌进行表征. 将复合高分子絮凝剂与杀菌剂N,N-二甲基十二烷基苄基氯化铵(1227)用于市政生活污泥脱水中, 通过滤饼含水率和污泥比阻, 对比研究聚合氯化铝(PAC)、 PAM-AA和硫酸铝机械混合物以及Al3+复合高分子絮凝剂对市政污泥脱水性能的影响. 结果表明, Al3+复合高分子絮凝剂与1227协同使用, 可使污泥滤饼含水率降至63.8%, 效果较好.   相似文献   

12.
针对水泥窑掺烧活性污泥的输送工艺和含水量要求、以及尾矿可协同掺烧的特点,本文研究了以有色金属锡矿尾矿协同脱除活性污泥水分,并以热重和红外等方法探讨了脱水机制。结果表明:常温下,污泥中掺入有色金属锡矿尾矿后可使污泥的物理挤压方法脱水效果得到显著的改善,使内部结合水容易脱除分离出来,可达到深度脱水。尾矿粉掺入量为污泥质量的50 %时可将污泥脱水率从物理挤压方法的60 %左右进一步提高到90%以上,脱水后污泥的含水率从74 %左右进一步下降到约40 %,脱水效果显著。脱水后污泥质量可得到大幅缩减,脱水压滤饼固体化程度较高,粉碎性好,污泥的粘附性得到了显著的降低,可为实现污泥和有色金属尾矿在水泥窑协同掺烧大量化处置提供更为简便和能耗小的工艺前提条件。  相似文献   

13.
给出了生产废水脱水调质的定压过滤毛细管模型,在此基础上对现有的各种调质技术进行了介绍,明确了进一步完善毛细管模型是开发高效脱水调质技术的关键所在.  相似文献   

14.
新型垂直流人工湿地组合工艺处理剩余污泥实验研究   总被引:1,自引:0,他引:1  
徐大勇  徐建平  裘秀群  宋珍霞 《河南科学》2012,30(11):1638-1642
剩余污泥是污水处理过程产生的主要副产品和有机废物,它的处理与处置是污水处理的重要组成部分.通过6个月的实验室模拟,研究了一种新型垂直流人工湿地组合工艺对剩余污泥的脱水和渗滤液的净化效果.结果表明,随着停留时间的增长污泥含水率和挥发性固体呈下降趋势,脱水后污泥含水率为40%,挥发性固体去除率达48.2%.在实验期间,共有392 L新鲜剩余污泥得到处理,获得10.3 L干污泥,污泥体积减小97.4%.湿地床表面污泥以平均每月0.87 cm的速度增厚,到试验结束时为5.23 cm深.组合系统以20.0 L(/m2.d)的污泥负荷间歇进泥方式运行,其污泥渗滤液的TN,TP和COD的平均去除率可分别达75.2%,97.3%和78.4%.结果说明该垂直流人工湿地组合系统可以作为传统污泥处置的一个替代方法,是一种建造简单、维护成本低的生态处理方法.  相似文献   

15.
基于骨架构建体污泥脱水及其固化土工性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以含水率为98.5%的污泥为研究对象,添加粉煤灰、生石灰等无机复合调理剂进行改性处理,研究其对泥饼固化体的比阻、含水率、最大干密度、渗透系数和无侧限抗压强度等性能的影响。结果表明,添加的粉煤灰和石灰起到骨架构建体作用,处理污泥的比阻从原污泥的109 s2/g降至107 s2/g,显著改善了污泥脱水性能。在不外掺水泥等其他固化剂的条件下,脱水后的泥饼固化体7d无侧限抗压强度大于100kPa,具有优良的固化土工性能。  相似文献   

16.
分别将固体聚合硫酸铁加入蒸馏水、自来水和浊水中,分析并探讨固体聚合硫酸铁因使用方式和水质不同而导致的水中残留铁差异。  相似文献   

17.
通过对污泥含水率和胞外聚合物(EPS)含量的测定,考察了阳离子表面活性剂(CTAC)和阳离子聚丙烯酰胺(CPAM)对污泥脱水性能的影响.结果表明,它们都有助于改善污泥的脱水性能,CPAM的最佳投药量为0.0106g/100mL污泥,表面活性剂投药量约为0.738g/100mL污泥,分别使污泥滤饼含水率降至80.28%,68.73%.为了进一步探讨表面活性剂对污泥的作用机理,实验通过观察表面活性剂处理前后污泥的电镜扫描照片(SEM)和粒径分布,发现经过表面活性剂处理的污泥原絮团被破坏,污泥表面呈网状结构;占体积分数90%的颗粒粒径都在52m以下,较原泥明显减小.实验表明,表面活性剂主要是通过破坏污泥结构释放内部结合水和溶出EPS来改善污泥脱水性能.  相似文献   

18.
以模拟印染废水为研究对象,考察了ECMBR和MBR系统中的膜污染和污泥混合液特性.结果表明:两系统膜过滤阻力均以沉积阻力为主,MBR和ECMBR中沉积阻力分占总阻力的99%和9334%,但ECMBR总阻力仅为普通MBR污泥总阻力的1/4,电凝聚可有效降低沉积层阻力.对比分析两系统中的混合液特性,ECMBR中污泥平均粒径大,Zeta电位绝对值小,胞外聚合物和溶解性微生物产物浓度低,污泥相对疏水性较高.电凝聚通过改变混合液特性,从而有效改善膜生物反应器过滤性能,增加膜通量,减少膜过滤阻力.  相似文献   

19.
将正渗透技术应用于污泥浓缩脱水,对孔径更大、机械强度更高的低压过滤膜应用于正渗透污泥脱水工艺的可行性及影响因素进行了探索。对比试验证明低压过滤膜由于膜厚度方面的劣势带来的严重浓差极化现象而无法获得良好的水通量,不能满足用于正渗透污泥脱水的要求。对正渗透污泥脱水过程中盐离子反向传质情况的监测分析发现,这一过程受污泥侧盐累积量与污泥含水率两个因素影响,污泥侧盐浓度最终根据试验条件不同而稳定在0.1~0.2mol/L内。污泥中混入盐对污泥极限脱水性能存在不利影响而应加以控制。试验用的3种常用污泥絮凝剂使正渗透污泥脱水效果有所提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号