首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A H Sharpe  J J Hunter  P Chassler  R Jaenisch 《Nature》1990,346(6280):181-183
  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.  相似文献   

3.
Ciliary neurotrophic factor (CNTF) supports the survival of embryonic motor neurons in vitro and in vivo, and prevents lesion-mediated degeneration of rat motor neurons during early post-natal stages. Here we report that CNTF greatly reduces all the functional and morphological changes in pmn/pmn mice, an autosomal recessive mutant leading to progressive caudo-cranial motor neuron degeneration. The first manifestations of progressive motor neuronopathy in homozygous pmn/pmn mice become apparent in the hind limbs at the end of the third post-natal week, and all the mice die up to 6 or 7 weeks after birth from respiratory paralysis. Treatment with CNTF prolongs survival and greatly improves motor function of these mice. Moreover, morphological manifestations, such as loss of motor axons in the phrenic nerve and degeneration of facial motor neurons, were greatly reduced by CNTF, although the treatment did not start until the first symptoms of the disease had already become apparent and substantial degenerative changes were already present. The protective and restorative effects of CNTF in this mouse mutant give new perspectives for the treatment of human degenerative motor neuron diseases with CNTF.  相似文献   

4.
SPINAL muscular atrophy (SMA) describes a group of heritable degenerative diseases that selectively affect the alpha-motor neuron. Childhood-onset SMAs rank second in frequency to cystic fibrosis among autosomal recessive disorders, and are the leading cause of heritable infant mortality. Predictions that genetic heterogeneity underlies the differences between types of SMA, together with the aggressive nature of the most-severe infantile form, make linkage analysis of SMA potentially complex. We have now analysed 13 clinically heterogeneous SMA families. We find that 'chronic' childhood-onset SMA (including intermediate SMA or SMA type II, and Kugelberg-Welander or SMA type III) is genetically homogeneous, mapping to chromosomal region 5q11.2-13.3.  相似文献   

5.
Q Yan  J Elliott  W D Snider 《Nature》1992,360(6406):753-755
Current ideas about the dependence of neurons on target-derived growth factors were formulated on the basis of experiments involving neurons with projections to the periphery. Nerve growth factor (NGF) and recently identified members of the NGF family of neuronal growth factors, known as neurotrophins, are thought to regulate survival of sympathetic and certain populations of sensory ganglion cells during development. Far less is known about factors that regulate the survival of spinal and cranial motor neurons, which also project to peripheral targets. NGF has not been shown to influence motor neuron survival, and whether the newly identified neurotrophins promote motor neuron survival is unknown. We show here that brain-derived neurotrophic factor (BDNF) is retrogradely transported by motor neurons in neonatal rats and that local application of BDNF to transected sciatic nerve prevents the massive death of motor neurons that normally follows axotomy in the neonatal period. These results show that BDNF has survival-promoting effects on motor neurons in vivo and suggest that BDNF may influence motor neuron survival during development.  相似文献   

6.
L Schnell  M E Schwab 《Nature》1990,343(6255):269-272
After lesions in the differentiated central nervous system (CNS) of higher vertebrates, interrupted fibre tracts do not regrow and elongate by more than an initial sprout of approximately 1 mm. Transplantations of pieces of peripheral nerves into various parts of the CNS demonstrate the widespread capability of CNS neurons to regenerate lesioned axons over long distances in a peripheral nerve environment. CNS white matter, cultured oligodendrocytes (the myelin-producing cells of the CNS), and CNS myelin itself, are strong inhibitors of neuron growth in culture, a property associated with defined myelin membrane proteins of relative molecular mass (Mr) 35,000 (NI-35) and 250,000 (NI-250). We have now intracerebrally applied the monoclonal antibody IN-1, which neutralizes the inhibitory effect of both these proteins, to young rats by implanting antibody-producing tumours. In 2-6-week-old rats we made complete transections of the cortico-spinal tract, a major fibre tract of the spinal cord, the axons of which originate in the motor and sensory neocortex. Previous studies have shown a complete absence of cortico-spinal tract regeneration after the first postnatal week in rats, and in adult hamsters and cats. In IN-1-treated rats, massive sprouting occurred at the lesion site, and fine axons and fascicles could be observed up to 7-11 mm caudal to the lesion within 2-3 weeks. In control rats, a similar sprouting reaction occurred, but the maximal distance of elongation rarely exceeded 1 mm. These results demonstrate the capacity for CNS axons to regenerate and elongate within differentiated CNS tissue after the neutralization of myelin-associated neurite growth inhibitors.  相似文献   

7.
在12头家兔操作式摄食行为中,记录不同脑区(皮质视区、运动区、海马背区)172个神经元的单位放电,发现每个脑区都有神经元的变化与行为的不同方面(环境、运动、目的)相关。又发现:与行为某一方面相关变化的神经元数量在不同脑区是不等的,最显著的差异见于皮质视区与运动区:在皮质视区,大部分不是“环境”神经元,而是“运动” 神经元;在皮质运动区,大部分不是“运动”神经元,而是“目的”神经元。这可能与此二区的组织结构的明显差异有关。  相似文献   

8.
Oligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use. Here we show that the most abundant lactate transporter in the central nervous system, monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched within oligodendroglia and that disruption of this transporter produces axon damage and neuron loss in animal and cell culture models. In addition, this same transporter is reduced in patients with, and in mouse models of, amyotrophic lateral sclerosis, suggesting a role for oligodendroglial MCT1 in pathogenesis. The role of oligodendroglia in axon function and neuron survival has been elusive; this study defines a new fundamental mechanism by which oligodendroglia support neurons and axons.  相似文献   

9.
Motor neuron columnar fate imposed by sequential phases of Hox-c activity   总被引:1,自引:0,他引:1  
Dasen JS  Liu JP  Jessell TM 《Nature》2003,425(6961):926-933
The organization of neurons into columns is a prominent feature of central nervous system structure and function. In many regions of the central nervous system the grouping of neurons into columns links cell-body position to axonal trajectory, thus contributing to the establishment of topographic neural maps. This link is prominent in the developing spinal cord, where columnar sets of motor neurons innervate distinct targets in the periphery. We show here that sequential phases of Hox-c protein expression and activity control the columnar differentiation of spinal motor neurons. Hox expression in neural progenitors is established by graded fibroblast growth factor signalling and translated into a distinct motor neuron Hox pattern. Motor neuron columnar fate then emerges through cell autonomous repressor and activator functions of Hox proteins. Hox proteins also direct the expression of genes that establish motor topographic projections, thus implicating Hox proteins as critical determinants of spinal motor neuron identity and organization.  相似文献   

10.
H G Lidov  T J Byers  S C Watkins  L M Kunkel 《Nature》1990,348(6303):725-728
Moderate non-progressive cognitive impairment is a consistent feature of Duchenne muscular dystrophy (DMD), although no central nervous system (CNS) abnormality has been identified. Recent studies have elucidated the molecular defect in DMD, including the absence of the protein dystrophin in affected individuals. Normal brain tissue contains dystrophin messenger RNA and dystrophin is present in low abundance in the brain and seems to be regulated in this tissue, at least in part, by a promoter that differs from that in muscle. Until now, antibodies and immunocytochemical methods used to demonstrate dystrophin at the plasma membrane of mouse and human muscle have proven inadequate to localize precisely dystrophin in the mammalian CNS. We have now made an antibody (anti 6-10) which is much more sensitive than those previously available to immunolabel dystrophin in the CNS. Using this antibody, we found that in the mouse, dystrophin is particularly abundant in the neurons of the cerebral and cerebellar cortices, and that it is localized at postsynaptic membrane specializations. Dystrophin may have a different role in neurons than in muscle, and an alteration at the synaptic level may be the basis of the cognitive impairment in DMD.  相似文献   

11.
Greenberg DA  Jin K 《Nature》2005,438(7070):954-959
Angiogenesis--the growth of new blood vessels--is a crucial force for shaping the nervous system and protecting it from disease. Recent advances have improved our understanding of how the brain and other tissues grow new blood vessels under normal and pathological conditions. Angiogenesis factors, especially vascular endothelial growth factor, are now known to have roles in the birth of new neurons (neurogenesis), the prevention or mitigation of neuronal injury (neuroprotection), and the pathogenesis of stroke, Alzheimer's disease and motor neuron disease. As our understanding of pathophysiology grows, these developments may point the way towards new molecular and cell-based therapies.  相似文献   

12.
13.
为了对不同神经元进行区分,采用L-Measure软件对神经元的几何形态进行特征提取,通过主成分分析对提取的特征降维进行处理.采用概率神经网络、BP(Back Propagation)神经网络和模糊分类器组成的分类器“投票”,对锥体神经元、普肯野神经元、运动神经元、感觉神经元、双级神经元、三级神经元和多级神经元7种神经元...  相似文献   

14.
肌萎缩性侧索硬化症(ALS)是一种渐进的致命的神经退行性疾病,症状为运动神经元损失所导致的肌肉萎缩和痉挛,大部分病人最后死于呼吸衰竭.对其致病机理的研究主要集中于对神经元的影响,而对施旺细胞在其中的作用至今仍未有报道.之前研究发现在一个青少年发病的ALS家族中,SIGMAR1基因编码区的一个碱基存在错位突变,该突变使Sigma-1型受体(σ1R)的102位氨基酸由谷氨酸(E)突变为谷氨酰胺(Q).本文通过在大鼠施旺细胞系(RSC96细胞)中过表达野生型及突变型σ1R来研究该突变对RSC96细胞凋亡的影响.实验结果表明在毒胡萝卜素(Thapsigargin)诱导的内质网压力和σ1R激动剂PRE084的刺激下,突变型σ1R使施旺细胞更倾向于凋亡,失去了对胞质Ca~(2+)调节的能力,并且对ADAM10具有更强的抑制作用.本研究提示σ1R突变也可能通过施旺细胞对ALS的病理过程起到作用.  相似文献   

15.
人和小鼠神经干细胞的体外培养的分化研究   总被引:4,自引:0,他引:4  
首次克隆了小鼠神经元标志性微管蛋白βⅢ基因,从核苷酸序列推导出小鼠与人两者之间在其羧基端有相同的EAQGPK六肽,进一步证实用抗人微管蛋白βⅢ单抗可检测小鼠神经干细胞分化成的神经元细胞,免疫组化鉴定显示小鼠神经干细胞在体积分数为1%胎牛血清(FBS)诱导下,可分化成神经元,星形胶质细胞,少突胶质细胞,同时培养了13周龄胎儿脑来源的人类神经干细胞,用特异性的抗人nestin抗体鉴定,全部为阳性细胞,但它们经诱导分化产生较不同寻常的细胞分化细胞和分化程度,在生长因子减半和1%FBS诱导条件下可分化为神经元和星形胶质细胞,而无少突胶质细胞分化,NF单抗检测证实为早期分化的神经元。  相似文献   

16.
J G White  E Southgate  J N Thomson 《Nature》1992,355(6363):838-841
Identification of the genes orchestrating neurogenesis would greatly enhance our understanding of this process. Genes have been identified that specify neuron type (for example cut and numb in Drosophila and mec-3 in Caenorhabditis elegans) and process guidance (for example, unc-5, unc-6 and unc-40 in C. elegans and the fas-1 gene of Drosophila). We sought genes defining synaptic specificity by identifying mutations that alter synaptic connectivity in the motor circuitry in the nematode C. elegans. We used electron microscopy of serial sections to reconstruct the ventral nerve-cords of uncoordinated (unc) mutants that have distinctive locomotory choreographies. Here we describe the phenotype of mutations in the unc-4 gene in which a locomotory defect is correlated with specific changes in synaptic input to a subset of the excitatory VA motor neurons, normally used in reverse locomotion. The circuitry alterations do not arise because of the inaccessibility of the appropriate synaptic partners, but are a consequence of changes in synaptic specificity. The VA motor neurons with altered synaptic inputs are all lineal sisters of VB motor neurons; the VA motor neurons without VB sisters have essentially the same synaptic inputs as in wild-type animals. The normal function of the wild-type allele of unc-4 may thus be to invoke the appropriate synaptic specificities to VA motor neurons produced in particular developmental contexts.  相似文献   

17.
目的:研究一氧化氮合酶(NOS1)在小鼠脑内的分布.方法:采用免疫组织化学技术,观察了一氧化氮合酶在正常小鼠脑内的表达.结果:NOS1阳性神经元分布于中枢神经系统的广泛区域,包括大脑皮质、海马、齿状回、间脑和脑干.结论:表明N0与中枢神经系统的诸多功能有关.  相似文献   

18.
Horie T  Shinki R  Ogura Y  Kusakabe TG  Satoh N  Sasakura Y 《Nature》2011,469(7331):525-528
In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.  相似文献   

19.
110例运动神经元病的电生理研究   总被引:3,自引:0,他引:3  
通过对110例运动神经元病的电生理变化的分析,以探讨电生理改变与临床表现的相关性。采用丹麦丹迪公司Neuromatic2000C型双导神经肌电位诊断仪及DantecKeypoint四导电生理诊断仪检测110例运动神经元病的电生理变化,对所记录图像进行了分析。运动单元电位时限增宽(95.4%),运动单元数量减少(92.7%),波幅增高(77.3%),巨大电位(25.4%)。纤颤、正相电位与病程有关。束颤电位不是前角细胞病变的敏感指标。萎缩肌异常程度重于未萎缩肌。胸锁乳突肌阳性率(82.3%)高于舌肌(23.5%)。神经电图中运动神经传导速度大多数正常,传导速度减慢(18.4%),表明部分病例前角细胞呈退行性变,并累及粗纤维的轴索。感觉神经传导速度均正常。运动神经元病的电生理显示广泛性神经原性损害,肌电图能提高临床诊断准确率  相似文献   

20.
Control of neuronal fate by the Drosophila segmentation gene even-skipped   总被引:10,自引:0,他引:10  
C Q Doe  D Smouse  C S Goodman 《Nature》1988,333(6171):376-378
The central nervous system (CNS) contains a remarkable diversity of cell types. The molecular basis for generating this neuronal diversity is poorly understood. Much is known, however, about the regulatory genes which control segmentation and segment identity during early Drosophila embryogenesis. Interestingly, most of the segmentation and homoeotic genes in Drosophila, as well as many of their vertebrate homologues, are expressed during the development of the nervous system (for example, ref. 3). Are these genes involved in specifying the identity of individual neurons during neurogenesis, just as they specify the identity of cells during segmentation? We previously described the CNS expression of the segmentation gene fushi tarazu (ftz) and showed that ftz CNS expression is involved in the determination of an identified neuron. Here we show that another segmentation gene, even-skipped (eve), is expressed in a different but overlapping subset of neurons. Temperature-sensitive inactivation of the eve protein during neurogenesis alters the fate of two of these neurons. Our results indicate that the nuclear protein products of the eve and ftz segmentation genes are components of the mechanism controlling cell fate during neuronal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号