共查询到20条相似文献,搜索用时 101 毫秒
1.
2.
3.
《四川理工学院学报(自然科学版)》2017,(1):32-37
由于人脸姿态、表情、遮挡物、光照问题的影响,人脸关键点检测时通常会出现较大的误差,为了准确且可靠地检测关键点,提出了一种基于级联卷积神经网络的方法。利用人脸检测器检测到的人脸图像作为输入,第一层卷积神经网络直接检测所有的5个人脸关键点。随后根据这些检测到的点裁剪出5个人脸局部图像,级联的第二层网络使用5个不同的卷积神经网络单独地定位每个点。在实验测试环节,级联卷积神经网络方法的使用将人脸关键点的平均定位误差降低到了1.264像素。在LFPW人脸数据库上的实验结果表明:该算法在定位准确性和可靠性上要优于单个CNN的方法以及其他方法,该算法在GPU(图形处理器)模式下处理一个人脸图像仅需15.9毫秒。 相似文献
4.
针对目前人脸表情识别存在准确率不高、模型复杂和计算量大的问题,文章提出了一种基于八度卷积改进的人脸表情识别模型(OCNN):使用改进的八度卷积进行特征提取,提高对细节特征的提取效果,降低特征图的冗余,在不增加参数的同时减少运算量,以提高特征提取性能;利用DyReLU激活函数来增强模型的学习和表达能力;使用自适应平均池化下采样层代替全连接层,以减少参数;将模型在大规模数据集上进行预训练,并在FER2013、FERPlus、RAF-DB数据集上进行模型性能验证实验。实验结果表明:训练后的模型权重为10.4 MB,在人脸表情识别数据集FER2013、FERPlus和RAF-DB上的准确率分别达到73.53%、89.58%和88.50%;与目前诸模型相比,OCNN模型的准确性高且计算资源消耗低,充分证明了该模型的有效性。 相似文献
5.
6.
针对牲畜面部识别在养殖行业广泛需求的问题, 提出一种基于卷积神经网络的猪脸特征点检测方法, 解决了猪脸特征点难检测的问题. 首先, 采集猪面部数据并进行特征点标注, 使用新的采集方法以解决猪口部通常不可见的问题; 其次, 对猪脸数据和人脸数据进行结构计算, 匹配相似度较高的猪脸和人脸, 构建猪脸人脸匹配数据集; 再次, 利用匹配数据集训练TPS(thin plate spline)形变卷积神经网络, 得到形变后的猪脸数据集以适配人脸特征点检测模型; 最后, 使用形变猪脸数据集对人脸特征点检测神经网络模型进行微调, 得到猪脸特征点检测模型. 实验结果表明, 用该方法进行猪脸特征点检测, 错误率仅为5.60%. 相似文献
7.
针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行融合,利用池化层的特征,将融合后的特征送入全连接层,对其特征进行融合处理来增加网络的非线性表达,使网络学习到的特征更加丰富;最后,输出层经过Softmax分类器对表情进行分类,在公开数据集FER2013和CK+上进行实验,并且对实验结果进行分析。实验结果表明:改进后的网络结构在FER2013和CK+数据集的面部表情上,识别率分别提高了0.06%和2.25%。所提方法在人脸表情识别中对卷积神经网络设置和参数配置方面具有参考价值。 相似文献
8.
针对人脸检测过程中难以区分人脸与非人脸等问题,提出了一种基于级联Adaboost和神经网络PCA算法的人脸检测新方法以提高人脸检测的正确率。该方法采用两级检测器对人脸进行区分检测,首先将计算速度较快的Adaboost算法作为第一级检测器对人脸图像快速扫描,对所有判断为人脸的窗口进行合并,然后将合并的窗口提取特征并送入作为第二级检测器的PCA进行验证,排除那些不可能是人脸模式的窗口,最后经过PCA检测结果判别输出验证后的人脸窗口参数(包括窗口的大小和位置信息)。不同算法检测结果显示,基于本方法的人脸检测正确率达到了92.6%,检测率为94.1%;基于Adaboost检测正确率为62.5%,此时的检测率为88%;基于SVM检测正确率为54%,此时的检测率为89%;基于FSS检测正确率为66%,此时的检测率为92%。实验结果表明,本方法能够很好的区分人脸模式和非人脸模式。因此,在这种意义上来说,级联的Adaboost和PCA算法组成的两级检测器可以明显提高人脸检测系统的性能。 相似文献
9.
针对复杂场景图像中的人脸,提出了一种基于BP神经网络的人脸检测算法,由网络训练和人脸定位两部分组成.可以有效地运用于多人脸、不同尺寸、不同姿态、不同面部表情、不同肤色、不同光照条件和复杂背景的情况。实验结果表明该算法快速有效。 相似文献
10.
《贵州师范大学学报(自然科学版)》2017,(5):96-101
为了解决银行、邮局等场合的实时数字识别问题,提出了一种优化的卷积神经网络(Convolutionnal Neural Network,CNN)数字识别方法。以Lenet-5模型为基础改进了卷积神经网络结构并推导了改进后的前向和反向传播算法,将改进的卷积神经网络在手写、印刷数字组合数据库上进行测试,分析了不同样本数量、训练迭代次数等参数对识别准确率的影响,并与传统算法进行比较分析。结果表明改进后的CNN结构简单,处理速度快,识别准确率高,具有良好的鲁棒性和泛化性,识别性能明显高于传统网络结构。 相似文献
11.
为了提高卷积神经网络(CNN)的泛化性和鲁棒性,改善无人机航行时识别目标图像的精度,提出了一种CNN与概率神经网络(PNN)相结合的混合模型。利用CNN提取多层图像表示,使用PNN提取特征对图像进行分类以替代CNN内部的BP神经网络,采用均方差和降梯度法训练模型,通过将预处理的图像传输到CNN-PNN模型,对图像纹理和轮廓进行分类识别,并将此模型的仿真结果与卷积神经网络模型、卷积神经网络-支持向量机模型的结果进行对比。仿真结果表明,与其他两种模型相比,CNN-PNN模型具有更好的精准度,识别率高达96.30%。因此,CNN-PNN模型能够快速有效地识别图像,准确度和实时性较高,在图像识别等方面具有很好的应用前景。 相似文献
12.
针对当前中国检测桥梁裂缝依赖人工目测,危险系数极大的落后现状,研究了一种基于数字化和智能化的检测方法,以提高桥梁安全诊断效率,降低危险系数。结合机器视觉和卷积神经网络技术,利用Raspberry Pi处理器采集和预处理图像,分析裂缝图像的特点,选取效果检测和识别裂缝效果最佳处理算法,改进裂缝分类的卷积神经网络模型(CNN),最终提出一种新的智能裂缝检测方案。实验结果显示:该方案能够找到超出桥梁裂缝最大限值的所有裂缝,并可以有效识别裂缝类型,识别率达90%以上,能够为桥梁裂缝检测提供参考数据。 相似文献
13.
针对目前下肢动作模式识别技术存在的数据量少、识别率低的问题,提出了一种新的基于卷积神经网络的下肢动作模式识别方法。以下肢步态动作识别为对象,采集无负重平地行走,无负重上/下楼及负重上/下楼5种步态的表面肌电信号(surface electromyography,sEMG),对sEMG进行特征提取,构建了一种以特征集作为输入的卷积神经网络,并比较了其与另外几种传统分类识别方法的识别准确率和工作特征。实验结果表明,新方法对于5种步态的平均识别准确率大于95%,错误率都低于8%,具有较高的准确性。因此所提方法的输入特征集更能代表预测模型特征,模式识别率更高,可为康复医疗机器人、助力机器人等设备改善下肢运动功能提供参考。 相似文献
14.
基于人工神经网络的人脸识别分类器设计 总被引:1,自引:0,他引:1
为了提高人脸识别系统的自适应性,采用BP神经网络对抽取出的人脸特征进行识别。对人工神经网络、BP网络应用于人脸识别的过程做了简要介绍。并通过仿真实验加以验证。 相似文献
15.
小波神经网络在人脸识别中的应用 总被引:1,自引:0,他引:1
姜友谊 《西安科技大学学报》2012,32(5):652-657
人脸识别是一个涉及生理学、心理学、图像处理、计算机视觉、模式识别和数学等多个学科的前沿课题。小波神经网络是在小波分析研究获得突破的基础上提出的一种前馈性网络,避免了BP网络等结构设计上的盲目性,网络训练过程从根本上避免了局部最优等非线性优化问题,有较强的函数学习能力和推广能力。基于小波神经网络,文中提出了一种新的人脸识别算法。该算法利用小波多分辨特性和神经网络的鲁棒性和记忆性,同时结合了加速网络收敛速度的小波神经网络步长调整算法。实验证明该算法有高的检测率和有效性。 相似文献
16.
微表情持续时间短、表达强度低,给训练有效模型带来了挑战。针对此问题,提出了一种基于像素特征的微表情识别方法。对图像序列的面部区域进行裁剪,消除背景噪声;将每一帧的像素矩阵与第一帧(中性表情)做差处理,提取面部变化;对做差的结果累加,进一步突出面部表情;使用搭建的浅层CNN网络进行分类。在3个公共微表情数据集组成的交叉数据集上进行K折(K-fold)交叉验证实验中,所提方法的3个评价指标ACC(accuracy)、UF1(unweighted F1-score)和UAR(unweighted Average Recall)分别达到了0.830 4、0.782 7和0.794 4,表明了该方法的有效性。与LBP-TOP等8个模型的对比实验中,所提方法的指标明显优于对比模型,验证了该方法的优越性。 相似文献
17.
对图像进行预处理,用卷积神经网络的方法训练数据集及调整参数,建立坑洼检测模型.实验结果表明:本算法的执行效果好于直接进行坑洼检测的方式,为道路坑洼检测提供了良好的解决方案. 相似文献
18.
以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN) 方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。 相似文献
19.
随着激光雷达传感器的快速发展,目标检测算法从传统的2D检测快速转向3D检测。然而,激光雷达产生的点云是不规则和非结构化的数据,传统的卷积神经网络无法对其进行处理。基于此提出了一种新颖的图卷积神经网络,能够更好地利用数据的几何关系和拓扑结构直接从点云中学习特征以进行3D目标检测。首先将原始激光雷达点云数据进行下采样,再进行固定半径邻域图的构建,随后设计了一个新型的图卷积神经网络对点云进行编码来预测图中每个顶点所属对象的类别和形状。为提升检测准确度,网络中加入了一种校准机制来减少特征在不同维度变化时引入的平移误差,此外还引入了注意力机制,以使用权重来进一步强化输出的顶点特征。在 KITTI 数据集上进行实验,实验结果表明,此方法能够有效对3D目标进行检测。对比其他多种检测算法,此方法在检测准确度上具有一定的优势。 相似文献
20.
【目的】植被检测是城市生态研究的重要手段,然而由于遥感图像中植被存在阴影区域、遮挡区域以及色彩上的畸变等,导致当前的植被检测精度较低。基于遥感卫星影像,采用深度学习技术快速有效地检测出城市中的植被区域,为植被资源统计等相关研究提供依据。【方法】选用深度卷积神经网络模型,对高分辨率遥感影像中的植被区域进行检测。对不同的优化器,通过设置不同的卷积核大小,对精度进行对比分析。最后对网络层数进行研究,对设置合适网络层数进行分析,用构造的深度卷积神经网络在实验数据上进行植被区域检测。【结果】利用卷积神经网络处理二维图像时,无需手动提取特征,进行简单少量的预处理后,直接把图像输入到CNN模型中进行训练,即可实现图片的识别分类功能。降低了预处理的难度,同时局部感知和权值共享大幅度地减少了参数量,加快了计算速度。次抽样还能保证图像处理后的平移、旋转、缩放和拉伸的不变性。解决了传统方法计算量和样本量大、结构复杂以及费时的缺点。在采集到的高分辨率紫金山区域的遥感图像中,通过设计的多层卷积神经网络模型对区域中的植被资源进行分析,对比和研究不同的优化器、卷积核和网络层数,植被检测精度达到95.4%,明显高于当前众多植被检测算法。【结论】在深度学习中,目标检测的精度依赖于网络的结构设置,通过对优化器、卷积核以及网络层数进行设定,可以明显提高目标检测效率和精度。 相似文献