共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了一类具有Caputo分数导数的分数阶脉冲微分方程反周期边值问题解的存在性与唯一性.首先,运用分析的方法计算出边值问题的Green函数,并讨论了Green函数的性质;其次,将微分方程边值问题转化为积分算子方程,利用不动点理论及压缩映射原理,得到了关于反周期边值问题解的存在性及唯一性的多个新结论.特别地,研究的边值问题在脉冲条件和边界条件中都涉及状态变量的分数阶导数. 相似文献
2.
研究了一类分数阶微分方程反周期边值问题,在连续函数f:[0,T]×R→R满足一定条件下,利用不动点定理得到了分数阶微分方程反周期边值问题解的存在性与唯一性,并举例说明了结论的适用性. 相似文献
3.
研究了一类分数阶脉冲微分方程反周期边值问题解的存在性与唯一性。利用不动点定理和Banach压缩映射原理,特别讨论了反周期边值问题在脉冲条件下解的存在性与唯一性。 相似文献
4.
分数阶微分方程边值问题具有良好的理论价值和广泛的应用背景,一直吸引不少学者对其进行研究.反周期边值问题是边值问题中重要的一类.作者利用Krasnoselskii不动点定理和一些分析技巧,研究一类分数阶微分积分方程反周期边值问题,获得了反周期边值问题解存在的一个充分条件.与以往的结果相比较,论文中所得的条件容易验证,在一定程度上推广了已有的结论. 相似文献
5.
通过Schauder不动点定理和Banach压缩映射原理,得到了一类非线性反周期分数阶脉冲微分方程边值问题解的存在性和唯一性。 相似文献
6.
分数阶微分方程反周期边值问题解的存在性 总被引:1,自引:0,他引:1
研究了一类在非线性项中含有未知函数分数导数的分数阶微分方程反周期边值问题解的存在性。利用Schauder不动点定理及压缩映射原理,在非线性项有界和无界的情况下,分别研究了反周期边值问题解存在的条件,最后得到了关于分数微分方程反周期的多个存在性定理。 相似文献
7.
8.
研究了系数矩阵不是方阵情形的分数阶退化微分方程的周期边值问题,利用Krasnoselskii不动点定理,得到了分数阶周期边值问题解存在的充分条件. 相似文献
9.
《宁夏大学学报(自然科学版)》2017,(1)
研究了一类带有p-Laplacian算子的分数阶微分方程反周期边值问题{(Cφp Dα0+u(t))=f(t,u(t)),t∈[0,T],u(0)=-u(T),u′(0)=-u′(T)解的存在性,其中1α≤2,T0,φp(s)=s p-1s,p1,(φp)-1=φq,p-1+q-1=1,CDα0+为Caputo分数阶微分,f:[0,T]×R→R为连续函数.利用分数阶微分方程和反周期边值条件的特性给出所研究边值问题的Green’s函数,然后借助于Banach压缩映像原理和Krasnosel’skiis不动点定理得到此反周期边值问题解的一些新的存在性理论.作为应用,给出了2个例子验证了所得结果. 相似文献
10.
研究一类Caputo分数阶微分方程边值问题:{D_0~α+u(t)+f(t,u(t))=0,t∈(0,1),u′(0)=u(1)=0,多解的存在性,其中1α≤2,f:[0,+∞)×R→[0,+∞)是连续的,D_(0+)~α是标准的Caputo微分.先将微分方程边值问题转化为积分方程,再转化为积分算子不动点问题,最后利用Leggett-Williams不动点定理得出Caputo分数阶微分方程边值问题至少有3个正解存在,其中格林函数的性质和非线性项的条件至关重要. 相似文献
11.
为考察一类分数阶微分方程边值问题解的存在性,利用Schauder不动点定理得到了该问题的解的存在性. 相似文献
12.
利用schauder不动点定理的理论给出非线性分数阶微分方程边值问题解的存在性. 相似文献
13.
利用Schauder不动点定理和Hlder不等式等方法研究了一类非线性反周期分数阶微分方程边值问题,证明了当满足一定条件时其解的存在性. 相似文献
14.
通过利用压缩映像原理得出了一类非线性分数阶脉冲微分方程反周期边值问题解的存在唯一性,并以实例验证,推广和改进了相关结论. 相似文献
15.
研究了一类分数阶微分方程边值问题。 应用Green函数,将分数阶微分方程边值问题转化为等价的积分方程, 利用Schaefer不动点定理和Leray Schauder不动点定理得到了该边值问题存在解的充分条件, 推广和完善了已有的结果。 相似文献
16.
讨论一类非线性分数阶微分方程耦合系统的两点边值问题,应用Green函数将微分系统转化为等价的积分系统,应用不动点定理证明系统正解的存在性和唯一性,并给出系统无解的充分条件。 相似文献
18.
19.
当f和g在适当的条件下,只需对解做有界性先验估计,利用变形的Leray-Schauder定理证明分数阶微分方程解的存在性. 相似文献
20.
主要对一类带有积分边值的分数阶微分方程的两点边值问题进行分析和研究.在特定的因素下,利用Schauder不动点定理,最终得出分数阶微分方程边值问题解的存在性. 相似文献