首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对基于优选固定等效因子的等效燃油消耗最小策略(ECMS)工况适应性差的问题,提出一种基于功率比的自适应ECMS(PR-AECMS)。以功率分流式混合动力汽车为对象,建立采用电池荷电状态(SOC)修正ECMS等效因子的显示自适应求解模型,针对仅基于SOC反馈修正等效因子的不足,引入相邻时段平均功率作为ECMS等效因子前馈调节变量,通过研究相邻时段平均功率、前一时段电池充放电行为,以及不同电池SOC实时值和参考值等因素对等效因子修正机制的影响,提出基于多模糊控制器切换的ECMS等效因子自适应求解方法,根据电池SOC和前一时段车辆平均功率制定各模糊控制器的切换逻辑,以当前时段与前一时段的平均功率比、前一时段电池SOC变化量为各模糊控制器输入,基于标准循环工况的全局优化结果确定模糊控制参数。基于不同标准循环工况的仿真结果表明,相较于无功率比修正的AECMS,本文提出的PR-AECMS使整车在大范围工况下具有更优越的等效燃油经济性和电池充放电平衡特性,有效提高了ECMS策略的工况适应性。  相似文献   

2.
针对等效燃油消耗最小策略(ECMS)中最优等效因子对工况依赖性较大的问题,以单轴并联式混合动力汽车为研究对象,以动态规划算法(DP)获得的特定行驶工况下最优控制结果为基础,逆推得到ECMS的最优等效因子;拟合出平均最优等效因子随电量维持水平的变化规律,以此为基础设计了一种自适应等效燃油消耗最小策略.在中国典型城市工况下的仿真结果表明:对于任意初始SOC值,文中策略能够较好地维持电量平衡;在SOC稳定之后的油耗为828 g,与DP对比仅有0.8%的误差.多种不同工况仿真结果表明,SOC变化规律与中国典型城市工况仿真结果一致,在SOC稳定之后,单个循环工况的油耗相对DP仅增加了0.1%~0.2%.  相似文献   

3.
为提高插电式混合动力汽车燃油经济性,采用基于动态规划(DP)的控制策略仿真分析了不同典型工况、不同行驶里程下SOC(电池荷电状态)的最优轨迹。在等效油耗最低能量管理策略(ECMS)的基础上,采用比例积分(PI)控制算法实时更新电能-燃油等效因子,以保证SOC实际轨迹能够大致跟随理论参考轨迹,进而提出了一种可实时控制的自适应等效油耗最低能量管理策略(AECMS)。为验证所提控制策略的控制性能有效性,采用不同典型工况及不同行驶里程对ECMS、DP、AECMS的控制性能进行了仿真对比。结果表明,AECMS控制效果接近于DP控制策略且可实时控制,电量消耗(CD)模式下AECMS相对于ECMS减少油耗3.50%~8.71%,电量保持(CS)模式下AECMS相对于ECMS减少油耗1.11%~2.46%。  相似文献   

4.
张静  于浩 《科学技术与工程》2019,19(18):302-308
为提高混合动力卡车燃油经济性,解决等效燃油消耗最小策略实时性差的问题,针对某款混合动力卡车,在基于逻辑门限值控制策略基础上,结合等效燃油消耗最小策略(equivalent consumption minization strategies,ECMS),制定等效因子,引入电池电荷状态(state of charge,SOC)平衡策略,建立了基于ECMS算法的门限值控制策略,既保证了算法的实时性,又提升了控制效果。仿真结果表明,相比于门限值的能量管理策略时的百公里油耗,燃油经济性提升5. 96%,所设计的控制策略能够在实现较好的燃油经济性的同时,维持电池SOC的平衡。  相似文献   

5.
针对传统等效燃油消耗最小策略(ECMS)下等效因子取值固定和工况适应性差的问题,提出了一种融合拖拉机工况预测的自适应等效燃油消耗最小策略(PA-ECMS)。以搭载混合动力液压机械无级变速动力总成的大马力拖拉机为研究对象,将ECMS策略应用于混合动力拖拉机的动力分配。首先,基于径向基(RBF)神经网络,建立了拖拉机工况预测模型,通过历史工况预测未来一段时间的工况信息;接着,结合电池荷电状态(SOC)反馈和预测的工况信息,对等效因子进行自适应调整;最后,在PA-ECMS策略框架下,对混合动力拖拉机的功率进行优化分配。仿真结果表明:与固定等效因子的ECMS策略和仅基于SOC反馈的自适应等效燃油消耗最小策略(A-ECMS)相比,采用所提策略时拖拉机在犁耕工况下的油耗分别降低了6.30%和2.55%,且具有更好的电量维持性能。  相似文献   

6.
针对某新型双电机行星耦合插电式混合动力汽车(PHEV),以燃油经济性为研究目标,为改善以等效因子为核心的等效燃油瞬时消耗最小策略(ECMS)的控制效果,结合多动力源之间在行星齿轮机构中的耦合机理,建立油电等效因子自适应瞬态ECMS算法(A-ECMS),在此基础上进一步引入车辆初始荷电状态(SOC)和行驶里程对油电等效因子的影响,根据不同驾驶条件对等效因子进行离线遗传优化,建立基于等效因子优化Map图的遗传优化ECMS能量管理策略(GA-ECMS)。进行了仿真与硬件在环试验,仿真结果表明:相比于传统ECMS以及A-ECMS,本文提出的GA-ECMS算法下车辆百公里燃油消耗量分别降低了6.5%和3.4%;硬件在环试验结果与仿真结果趋势一致,表明了所制定的能量管理策略的有效性和可行性,从而可为建立不同初始SOC、不同行驶里程下PHEV功率分配策略提供理论基础。  相似文献   

7.
混合动力汽车工况识别自适应能量管理策略   总被引:2,自引:0,他引:2  
为改善传统等效燃油消耗最低策略(ECMS)在真实复杂路况下的控制效果,以并联混合动力汽车为研究对象,提出了一种依据工况变化在线调整等效因子的自适应等效燃油消耗最低(A-ECMS)控制策略。首先,提取差异化显著的工况特征参数,采用聚类分析方法来完成工况分类,构建典型工况库,计算出各典型工况对应的最优等效因子;然后,采用学习向量量化(LVQ)神经网络设计了工况识别器,经充分训练后识别器准确率达到98.8%;最后,在线采集选定的车辆行驶特征参数,将当前实际工况识别为典型工况库中某一种,采用对应典型工况下的最优等效因子作为当前优化输入,建立了基于工况识别的A-ECMS控制策略。仿真结果表明:与ECMS相比,在单一给定工况下,A-ECMS燃油经济性降低了0.8%,而电池组荷电状态(SOC)提高了0.13%,能取得近似优化效果;在多工况联合工况下,燃油经济性提高了4.18%,且SOC波动减小了43.26%,证明了A-ECMS控制策略的优越性。  相似文献   

8.
针对一款新型插电式混合动力轿车,以燃油经济性为目标,设计了其能量优化管理策略并进行了仿真验证。首先,建立了整车前向仿真模型;其次,综合考虑驾驶员需求、车辆及各部件状态,设计了基于规则的能量管理策略;再次,使用等效燃油消耗最小算法(ECMS)进一步优化转矩分配;最后,通过离线仿真和硬件在环仿真对上述策略进行测试验证。结果表明:与基于规则的能量管理策略相比较,优化后能量管理策略在新欧洲行驶工况(NEDC)下油耗降低4.29%;同时硬件在环试验也表明,所开发的等效燃油消耗最小(ECMS)控制策略能够在车载控制器中实时运行。  相似文献   

9.
为了提高混合动力汽车的燃油经济性和控制策略的稳定性,以第三代普锐斯混联式混合动力汽车作为研究对象,提出了一种等效燃油消耗最小策略(equivalent fuel consumption minimization strategy,ECMS)与深度强化学习方法(deep feinforcement learning,DRL)结合的分层能量管理策略。仿真结果证明,该分层控制策略不仅可以让强化学习中的智能体在无模型的情况下实现自适应节能控制,而且能保证混合动力汽车在所有工况下的SOC都满足约束限制。与基于规则的能量管理策略相比,此分层控制策略可以将燃油经济性提高20.83%~32.66%;增加智能体对车速的预测信息,可进一步降低5.12%的燃油消耗;与没有分层的深度强化学习策略相比,此策略可将燃油经济性提高8.04%;与使用SOC偏移惩罚的自适应等效燃油消耗最小策略(A-ECMS)相比,此策略下的燃油经济性将提高5.81%~16.18%。  相似文献   

10.
基于模糊在线识别的并联混合动力客车自适应控制策略   总被引:1,自引:1,他引:0  
针对一款并联混合动力客车提出了一种基于模糊在线识别的自适应控制策略.基于自主研发的混合动力车数据采集监控系统构建符合本地车辆实际行驶道路特点的典型工况,设计模糊工况识别算法对车辆实际行驶的工况类型进行在线识别.根据最小等效燃油消耗控制算法和电池电量平衡控制方法,结合工况识别的结果调用相应最优控制参数,对发动机和电池的功率分配进行实时优化计算,实现对整车的控制.实验结果表明,所设计的模糊识别方法能够较好地完成行驶工况类型的识别.基于此所提出的自适应控制方法能够在满足车辆需求功率和电池SOC维持在有效工作区间内的前提下完成发动机和电池的最优功率分配,显著提高整车的燃油经济性.   相似文献   

11.
为了兼顾平衡SOC与降低燃油消耗的需要,进一步提高插电式混合动力汽车的燃油经济性,对等效因子的实时优化方法进行了研究.以NEDC工况为例,将行驶工况分解为不同的基本工况块,分别对各个基本工况块的等效因子与燃油消耗量、SOC变化量的关系曲线进行线性拟合,并将等效因子实时优化问题转化为简单的线性规划问题,构建了基于线性规划的等效因子实时优化模型,在此基础上提出了基于线性规划的自适应等效燃油消耗最小策略(A-ECMS).硬件在环测试证明,基于线性规划的等效因子实时优化模型的实时性满足实车控制器在线控制的需求,具备实车应用的可行性.测试和仿真结果显示,在不同工况下基于线性规划模型的A-ECMS均可维持SOC平衡,取得接近于全局优化能量管理策略的燃油经济性,说明该实时优化模型具备实际应用价值和应用潜力.  相似文献   

12.
基于ECMS混联式混合动力客车工况识别控制策略   总被引:1,自引:0,他引:1  
由于城市特殊的运行工况,单纯的基于规则控制策略很难从城市复杂的工况中获取最佳燃油经济性.以提高一款新型混联式混合动力客车燃油经济性为目的,为了更好地适应城市复杂的行驶工况,制定了一种工况自适应实时优化控制策略.根据等效燃油最小控制策略思想结合新型混联式混合动力客车的结构特点构建发动机与电池间的功率分配实时优化算法,针对城市循环工况的特点选定了4种典型的工况类型,并获得不同行驶工况和等效燃油转换系数及油耗的关系,经分析发现每一行驶工况都存在相应的等效燃油系数使得其油耗最低,因此采用LVQ神经网络模型对各工况特征参数进行学习训练以进行实时工况识别,利用工况识别的方法获取当前运行的工况类型并选择相对应的等效系数进行周期性更新以期达到最佳燃油经济性,从而实现对不同工况的适应性.仿真结果表明:其燃油经济性比单纯的能量管理优化控制策略提高了8.55%,同时电池SOC能够控制在预定的范围内运行.  相似文献   

13.
为了提高混合动力汽车的燃油经济性,研究了基于萤火虫算法(firefly algorithm, FA)优化的等效燃油消耗最小控制策略(equivalent fuel consumption minimization strategy, EFCMS).以并联式混合动力汽车为研究对象,运用萤火虫算法对等效燃油消耗最小控制策略的等效因子以及电池荷电状态(state of charge,SOC)进行优化,实现了并联式混合动力汽车的能量优化控制.在Matlab/Simulink中搭建整车模型进行仿真,结果表明:UDDS(urban dynamometer driving schedule)、NEDC(new European driving cycle)、HWFET(highway fuel economy test)这3种工况下,与优化前相比,节油率分别达到了28.5%、25.5%、16.9%;基于FA的等效燃油消耗最小控制策略相比于传统的等效燃油消耗最小控制策略,可以有效提高燃油经济性,电池SOC可以更好地维持在目标值附近.  相似文献   

14.
以某并联式混动公交车为研究对象,建立了四种典型工况模型,采用蚁群算法优化了最小等效燃油消耗控制策略中四种工况的充放电等效因子;分析了路面坡度与电池荷电状态(state of charge,SOC)目标值域调整之间的对应关系,设计了相应坡度自适应模块;提出了基于道路工况分析的混合动力汽车(hybrid electric vehicle,HEV)控制策略优化方法.典型工况下的仿真对比分析表明,该方法具有良好的工况适应能力,燃油经济性明显优于几类典型HEV控制策略.  相似文献   

15.
为提高单行星排构型的混合动力汽车(hybrid electric vehicle, HEV)的燃油经济性,降低车辆燃油消耗量,提出了一种基于门控循环单元神经网络(gated recurrent unit neural network, GRU-NN)速度预测模型与自适应差分进化(adaptive differential evolution, A-DE)算法的能量管理策略,在模型预测控制(model predictive control, MPC)框架下预测未来车辆的行车速度,将整个工况内的全局优化求解问题转化为在预测时域内的局部优化求解,以发动机燃油消耗量最低与行车过程电池荷电状态(state of charge, SOC)平衡为目标,利用A-DE算法实现预测域内的最优控制序列求解。仿真结果表明,在实车采集的道路工况下,基于GRU-NN与A-DE算法的能量管理策略相较于ECMS燃油消耗量减少了4.55%,相较于动态规划燃油经济性达到了93.04%。  相似文献   

16.
目的改善燃料电池混合动力汽车的燃料经济性,优化混合动力系统能量管理控制.方法采用燃料电池和镍氢蓄电池构成新能源混合动力系统,以最少等效燃料消耗为目标函数,建立了混合动力系统能量分配管理的数学模型,引入惩罚因子对蓄电池的SOC进行调控,HWFET驾驶循环工况优化了混合动力系统实时能量分配结果当SOC介于0.5和0.8之间时,混合动力系统进入瞬时优化能量管理策略;当SOC0.5时,混合动力系统由燃料电池供能并给蓄电池充电;当SOC0.8时,混合动力系统主要由蓄电池供能,动力不足情况下由燃料电池能量补充;在惩罚因子的作用下,SOC将处于一个合理区域,最终使混合动力系统处于最优能量分配管理状态.结论实时功率优化控制策略避免燃料电池处于低功率低效率输出,在燃料电池和蓄电池之间合理分配功率,提高了燃料经济性,同时惩罚因子的引入保证了SOC稳定性.  相似文献   

17.
针对当前插电式混合动力汽车能量管理策略忽略电池老化成本和电池温度变化过大而导致的热失控问题,制定融合电池寿命和电池温度的深度Q-Learning神经网络(DQN)强化学习能量管理策略.首先,从融入能量管理策略的角度,建立动力电池热模型和老化模型,引入调节目标价值函数的严重因子和量化电池老化程度的安时通量.其次,建立由超温惩罚、等效电池老化成本和燃油消耗组成的目标价值函数,进而构建深度强化学习能量管理策略.最后,通过仿真实验对所制定的控制策略进行验证.结果表明:融合了电池老化和电池温度的能量管理策略能够有效抑制电池老化和温度.在4个随机工况中,DQN策略下的电池有效安时通过量相较于CD-CS最大下降了35.75%;与CD-CS相比,DQN策略下单个驾驶任务的行驶总成本最大降低10.36%,证明了所制定策略的有效性.  相似文献   

18.
针对并联混合动力汽车(PHEV),提出一种模糊多目标整车控制策略.通过应用电动机等效燃油消耗的概念,将整车燃油消耗与尾气排放同时作为优化目标.应用模糊逻辑和最小加权偏差法,并根据当前工况对优化目标的偏好情况,求得瞬时最优工作点.基于ADVISOR仿真平台的研究表明,模糊多目标控制策略(FMCS)相对基于规则的控制策略(RBCS)能够在不损失车辆动力性能的前提下有效降低燃油消耗和尾气排放,同时将电池荷电状态(SOC)维持在合理范围内.  相似文献   

19.
增程式电动汽车动力来源于增程器与动力电池,车辆运行过程中如何在两者之间分配需求功率,使得整车在行驶过程中燃油经济性最好,是增程式电动汽车能量管理策略核心的问题.提出一种基于动态规划的增程式电动汽车能量管理策略,运用动态规划对整个工况增程器与动力电池输出功率分配比例进行优化.欧洲标准行驶工况(NEDC)组合行驶工况的仿真结果表明:相比实车采用的恒温器式控制策略,基于动态规划的能量管理策略整车燃油经济性提高12.6%.  相似文献   

20.
混合动力城市公交车运行过程中平均速度偏低,导致过度使用动力电池,由于无法使用混合动力,使得整个行驶工况中不能保持良好的燃油经济性。本文提出了基于车速和电池荷电状态(SOC)规划的控制策略,在MATLAB/Simulink软件中搭建所设计的控制策略模型,并将控制策略导入CRUISE软件中,与所搭建的整车动力系统模型进行联合仿真。研究结果表明:基于车速和SOC规划的混合动力客车控制策略与基于规则的控制策略相比,整车燃油经济性提高了2.7%,且SOC的平衡性可控制在5%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号