首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunological tolerance has been demonstrated in double-transgenic mice expressing the genes for a neo-self antigen, hen egg lysozyme, and a high affinity anti-lysozyme antibody. The majority of anti-lysozyme B-cells did not undergo clonal deletion, but were no longer able to secrete anti-lysozyme antibody and displayed markedly reduced levels of surface IgM while continuing to express high levels of surface IgD. These findings indicate that self tolerance may result from mechanisms other than clonal deletion, and are consistent with the hypothesis that IgD may have a unique role in B-cell tolerance.  相似文献   

2.
Studies on transgenic mice expressing immunoglobulins against self-antigens have shown that self-tolerance is maintained by active elimination (clonal deletion), functional inactivation (clonal anergy) of self-reactive B cells, or a combination of both. We have established and characterized a transgenic mouse line expressing an anti-erythrocyte autoantibody. In contrast to other autoantibody transgenic lines, about 50% of the animals of this transgenic line suffer from autoimmune disease, indicating a loss of self-tolerance. Here we show that peritoneal Ly-1 B cells (also known as B-1 cells) are responsible for this autoimmune disease in our transgenic mice. A few self-reactive Ly-1 B cells that have somehow escaped the deletion mechanism expand in the peritoneum because of the absence of self-antigen. These Ly-1 B cells are eliminated in vivo by apoptosis once exposed to self-antigen. On the basis of these results we propose a novel autoantibody production mechanism whereby self-reactive B cells sequestered in compartments free of self-antigens may survive, proliferate and be activated for generation of pathogenic autoantibodies in autoimmune diseases.  相似文献   

3.
Autoimmune diabetes as a consequence of locally produced interleukin-2.   总被引:9,自引:0,他引:9  
During cell differentiation in the thymus, self-reactive T cells can be generated. The majority of these seem to be deleted after intrathymic encounter with the relevant autoantigen. As all self antigens are unlikely to be present in the thymus, some autoreactive T cells may escape censorship. Here we study the fate of these cells using transgenic mice expressing the class I molecule H-2Kb (Kb) in the insulin-producing beta-cells of the pancreas. These mice were crossed with mice transgenic for genes encoding a Kb-specific T-cell antigen receptor (TCR) which could be detected using a clonotype-specific monoclonal antibody. Although T cells expressing the highest level of transgenic TCR were deleted intrathymically in double-transgenic mice, Kb-specific T cells were detected in the periphery. These cells caused the rejection of Kb-expressing skin grafts, but ignored islet Kb antigens even after priming. But when double-transgenic mice were crossed with transgenic mice expressing the lymphokine interleukin-2 in the pancreatic beta-cells, there was a rapid onset of diabetes. These results indicate that autoreactive T cells that ignore self antigens may cause autoimmune diabetes when provided with exogenous 'help' in the form of interleukin-2.  相似文献   

4.
Interaction of a B cell expressing self-specific B-cell antigen receptor (BCR) with an auto-antigen results in either clonal deletion or functional inactivation. Both of these processes lead to B-cell tolerance and are essential for the prevention of auto-immune diseases. Whereas clonal deletion results in the death of developing autoreactive B cells, functional inactivation of self-reactive B lymphocytes leads to complex changes in the phenotype of peripheral B cells, described collectively as anergy. Here we demonstrate that deficiency in protein kinase Cdelta (PKC-delta) prevents B-cell tolerance, and allows maturation and terminal differentiation of self-reactive B cells in the presence of the tolerizing antigen. The importance of PKC-delta in B-cell tolerance is further underscored by the appearance of autoreactive anti-DNA and anti-nuclear antibodies in the serum of PKC-delta-deficient mice. As deficiency of PKC-delta does not affect BCR-mediated B-cell activation in vitro and in vivo, our data suggest a selective and essential role of PKC-delta in tolerogenic, but not immunogenic, B-cell responses.  相似文献   

5.
A role for clonal inactivation in T cell tolerance to Mls-1a   总被引:25,自引:0,他引:25  
Clonal deletion plays a major part in the maintenance of natural self-tolerance in both normal and transgenic mice. Self antigens that are expressed in the thymus result in the physical elimination of autoreactive thymocytes at a particular stage in their development. For example, the majority V beta 6- and V beta 8.1-bearing T cells that recognize the minor lymphocyte-stimulating antigen, Mls-1a (ref. 10) , are clonally deleted in the thymuses of normal mice and transgenic mice expressing Mls-1a (refs 2, 3, 9). In contrast, a very different mechanism of tolerance involving the functional inactivation, but not elimination, of autoreactive cells, termed clonal inactivation or clonal anergy, has been implicated in some experimentally manipulated systems of tolerance. To test further the mechanisms involved in self-tolerance, we have generated transgenic mice expressing a V beta 8.1 beta chain on greater than 95% of peripheral T cells and have tested tolerance to Mls-1a in these mice. Surprisingly, a significant fraction of the CD4+ peripheral cells that survived deletion were non-responsive in vitro to any stimulus tested. Naturally occurring tolerance to a self antigen expressed in the thymus can thus be mediated by clonal anergy, as well as by clonal deletion.  相似文献   

6.
Virus-induced autoantibody response to a transgenic viral antigen   总被引:12,自引:0,他引:12  
The induction of autoantibodies and their possible role in the pathogenesis of autoimmune disease are poorly understood. Involvement of infectious agents has been suspected, but direct evidence is sparse. Whether immunological unresponsiveness to self by antibody-forming B cells is maintained by clonal abortion, clonal anergy or suppression, or how the scenario of interactions between helper T cells, B cells and antigen-presenting cells is distorted in autoantibody responses, is being analysed and widely debated. To evaluate tolerance of neutralizing B-cell responses we used transgenic mice expressing the cell membrane associated glycoprotein (G) of vesicular stomatitis virus (VSV) as self-antigen. We show that autoantibodies to VSV-G cannot be induced by VSV-G in adjuvant or by recombinant vaccinia virus expressing VSV-G, but are triggered by infection with wild-type VSV. The data show that helper T-cell tolerance is crucial in maintenance of B-cell non-reactivity and that cognate T-B recognition is necessary to break tolerance of self-reactive B cells. These results may help to understand mechanisms of virus-induced autoimmunity.  相似文献   

7.
B Scott  H Blüthmann  H S Teh  H von Boehmer 《Nature》1989,338(6216):591-593
THE T-cell repertoire within an individual is biased to recognize antigen in the context of self major histocompatibility complex (MHC) antigens. This is thought to depend on a process of positive selection during development. Support for this notion has recently been obtained in experiments using transgenic mice bearing genes for T-cell receptors (TCR) of defined specificity: T cells expressing the introduced genes form the main part of the mature T-cell population only in mice that express the appropriate MHC product. We have now extended these observations using TCR transgenic mice homozygous for the severe combined immunodeficiency (SCID) mutation which are defective in the rearrangement of both TCR and immunoglobulin genes. In this case mature thymocytes develop only in transgenic mice that express the MHC product which restricts the specificity of the transgenic TCR. This shows that the interaction of the alpha beta TCR with thymic MHC antigen is essential for the development of mature T cells. Furthermore, the peripheral lymph nodes of such mice are underdeveloped, suggesting that the peripheral expansion of mature T cells may require interactions with other lymphocytes expressing a range of receptors.  相似文献   

8.
In B cells the loci encoding immunoglobulin chains usually show allelic exclusion; a given B cell transcribes and translates only one productively rearranged allele of the heavy and light chain loci. This ensures that each B cell expresses only one antigen receptor. The loci encoding T-cell receptor (TCR) alpha- and beta-genes may behave similarly. We have previously reported that the expression of a transgenic TCR beta-chain prevents functional and nonfunctional V beta rearrangements in the endogenous beta-chain loci but not D beta J beta rearrangements. We have also been unable to detect the expression of the TCR gamma-chain locus in thymocytes of these mice (unpublished observations). To study the mechanisms involved in forming a mature T-cell repertoire further, we have constructed mice expressing alpha- and beta-TCR transgenes derived from a cytotoxic T-cell clone that is specific for the male antigen H-Y in the context of H-2Db MHC molecules. Here we show that in these mice rearrangement of endogenous alpha-chain loci is also suppressed, although to a lesser extent than rearrangement of beta-chain loci. In addition, in male alpha beta TCR transgenic mice we observed T-cell clones which had deleted both transgenic alpha- and beta-chain genes and expressed endogenous alpha- and beta-chain TCR genes. These cells are presumably derived from rare thymocytes that leave the male thymus because their TCR no longer recognizes self antigen. The vast majority of CD4+8+ nonmature thymocytes expressing alpha- and beta-transgenes are deleted in the male thymus.  相似文献   

9.
A given B lymphocyte makes an antibody containing either kappa- or lambda-light chains, but not both. This isotype exclusion is effected at the level of the rearrangement of the immunoglobulin gene segments, although by an unknown mechanism. An attractive possibility is that, following productive rearrangement of one of the light-chain loci, the newly synthesized light-chain polypeptide inhibits DNA rearrangement for the other isotype. To test such feedback regulation, we have created transgenic mice carrying a rearranged lambda 1-gene. By contrast with the B cells in normal newborn mice which are mainly kappa+lambda-, the B cells in the newborn transgenic mice express lambda- but not kappa-chains. We propose that the synthesis of any light chain, be it kappa or lambda, that allows expression of IgM on the cell surface results in a cessation of all V-J joining. Interestingly, the limited light-chain repertoire of the transgenic mice does not persist and most adult B cells express endogenous kappa-rearrangements and down-regulate the transgene.  相似文献   

10.
During lymphocyte development, the assembly of genes coding for antigen receptors occurs by the combinatorial linking of gene segments. The stochastic nature of this process gives rise to lymphocytes that can recognize self-antigens, thereby having the potential to induce autoimmune disease. Such autoreactive lymphocytes can be silenced by developmental arrest or unresponsiveness (anergy), or can be deleted from the repertoire by cell death. In the thymus, developing T lymphocytes (thymocytes) bearing a T-cell receptor (TCR)-CD3 complex that engages self-antigens are induced to undergo programmed cell death (apoptosis), but the mechanisms ensuring this 'negative selection' are unclear. We now report that thymocytes lacking the pro-apoptotic Bcl-2 family member Bim (also known as Bcl2l11) are refractory to apoptosis induced by TCR-CD3 stimulation. Moreover, in transgenic mice expressing autoreactive TCRs that provoke widespread deletion, Bim deficiency severely impaired thymocyte killing. TCR ligation upregulated Bim expression and promoted interaction of Bim with Bcl-XL, inhibiting its survival function. These findings identify Bim as an essential initiator of apoptosis in thymocyte-negative selection.  相似文献   

11.
Tolerance of class I histocompatibility antigens expressed extrathymically   总被引:24,自引:0,他引:24  
G Morahan  J Allison  J F Miller 《Nature》1989,339(6226):622-624
Although convincing evidence has been obtained for the imposition of self-tolerance by the intrathymic deletion of self-reactive T cells, the development of tolerance to antigens which are expressed only in the periphery is not so well understood. We have approached this question by creating transgenic mice which carry a class I major histocompatibility complex (MHC) gene (H-2Kb) linked to the rat insulin promoter. Mice expressing the transgene develop diabetes, but do not appear to mount an immune response against the transgene-expressing pancreatic beta-cells, even when the transgene is allogeneic with respect to the endogenous host H-2 antigens. We have now explored the mechanism of this tolerance further. We find that spleen cells from pre-diabetic transgenic (RIP-Kb) mice do not kill targets bearing H-2Kb, whereas thymus cells from the same mice do. The unresponsiveness of these spleen cells can be reversed in vitro by providing recombinant interleukin-2 (rIL-2). In older, diabetic mice, responsiveness develops as the pancreatic beta-cells are lost. Our results point to an extrathymic mechanism of tolerance induction, dependent on the continuous presence of antigen and the lack of IL-2 in the local environment of potentially reactive T cells.  相似文献   

12.
D A Nemazee  K Bürki 《Nature》1989,337(6207):562-566
B lymphocytes can be rendered specifically unresponsive to antigen by experimental manipulation in vivo and in vitro, but it remains unclear whether or not natural tolerance involves B-cell tolerance because B cells are controlled by T lymphocytes, and in their absence respond poorly to antigen (reviewed in ref. 7). In addition, autoantibody-producing cells can be found in normal mice and their formation is enhanced by B-cell mitogens such as lipopolysaccharides. We have studied B-cell tolerance in transgenic mice using genes for IgM anti-H-2k MHC class I antibody. In H-2d transgenic mice about 25-50% of the splenic B cells bear membrane immunoglobulin of this specificity, and abundant serum IgM encoded by the transgenes is produced. In contrast, H-2k x H-2d (H-2-d/k) transgenic mice lack B cells bearing the anti-H-2k idiotype and contain no detectable serum anti-H-2k antibody, suggesting that very large numbers of autospecific B cells can be controlled by clonal deletion.  相似文献   

13.
R H Seong  J W Chamberlain  J R Parnes 《Nature》1992,356(6371):718-720
Mature T cells express either CD4 or CD8 on their surface. Most helper T cells express CD4, which binds to class II major histocompatibility complex (MHC) proteins, and most cytotoxic T cells express CD8, which binds to class I MHC proteins. In the thymus, mature CD4+CD8- and CD4-CD8+ T cells expressing alpha beta T-cell antigen receptors (TCR) develop from immature thymocytes through CD4+CD8+ alpha beta TCR+ intermediates. Experiments using mice transgenic for alpha beta TCR suggest that the specificity of the TCR determines the CD4/CD8 phenotype of mature T cells. These results, however, do not indicate how a T cell differentiates into the CD4 or CD8 lineage. Here we show that the CD4 transmembrane region and/or cytoplasmic tail mediates the delivery of a specific signal that directs differentiation of T cells to a CD4 lineage. We generated transgenic mice expressing a hybrid molecule composed of the CD8 alpha extracellular domains linked to the CD4 transmembrane region and cytoplasmic tail. We predicted that this hybrid molecule would bind to class I MHC proteins through the extracellular domains but deliver the intracellular signals characteristic of CD4. By crossing our transgenic mice with mice expressing a transgenic alpha beta TCR specific for a particular antigen plus class I MHC protein, we were able to express the hybrid molecule in developing thymocytes expressing the class I MHC-restricted TCR. Our results show that the signal transduced by the hybrid molecule results in the differentiation of immature thymocytes expressing a class I-restricted TCR into mature T cells expressing CD4.  相似文献   

14.
Tolerance to self-antigens has been shown to develop during ontogeny as a result of the clonal deletion of self-reactive T cells. Tolerance, or better 'nonresponsiveness', to specific antigens can also be induced in adult animals but the mechanism(s) involved are not well understood. Most murine T-helper cells that express the V beta 6 T-cell receptor gene segment are specific for Mls-1a antigens. We have therefore been able to use an anti-V beta 6 monoclonal antibody to follow the fate of Mls-1a specific T cells in adult Mls-1b mice made specifically unresponsive to Mls-1a. We show that the induced unresponsiveness is not due to clonal deletion, but rather to clonal anergy. The anergic V beta 6 T-helper cells express IL-2 receptors and undergo limited blastogenesis in vitro upon stimulation, but do not produce IL-2, in marked contrast to V beta 6 cells from naive mice. Our data appear to represent an in vivo correlate for the induction of anergy that has been observed in T-cell lines in vitro.  相似文献   

15.
J Zikherman  R Parameswaran  A Weiss 《Nature》2012,489(7414):160-164
In humans, up to 75% of newly generated B cells and about 30% of mature B cells show some degree of autoreactivity. Yet, how B cells establish and maintain tolerance in the face of autoantigen exposure during and after development is not certain. Studies of model B-cell antigen receptor (BCR) transgenic systems have highlighted the critical role of functional unresponsiveness or ‘anergy’. Unlike T cells, evidence suggests that receptor editing and anergy, rather than deletion, account for much of B-cell tolerance. However, it remains unclear whether the mature diverse B-cell repertoire of mice contains anergic autoreactive B cells, and if so, whether antigen was encountered during or after their development. By taking advantage of a reporter mouse in which BCR signalling rapidly and robustly induces green fluorescent protein expression under the control of the Nur77 regulatory region, antigen-dependent and antigen-independent BCR signalling events in vivo during B-cell maturation were visualized. Here we show that B cells encounter antigen during development in the spleen, and that this antigen exposure, in turn, tunes the responsiveness of BCR signalling in B cells at least partly by downmodulating expression of surface IgM but not IgD BCRs, and by modifying basal calcium levels. By contrast, no analogous process occurs in naive mature T cells. Our data demonstrate not only that autoreactive B cells persist in the mature repertoire, but that functional unresponsiveness or anergy exists in the mature B-cell repertoire along a continuum, a fact that has long been suspected, but never yet shown. These results have important implications for understanding how tolerance in T and B cells is differently imposed, and how these processes might go awry in disease.  相似文献   

16.
Genetic basis of BCG-induced suppression of delayed hypersensitivity   总被引:2,自引:0,他引:2  
D J Schrier  J L Sternick  E M Allen  V L Moore 《Nature》1981,289(5796):405-407
BCG can either act as an adjuvant to potentiate immunological responses or, in some cases, can induce suppression. The reasons for these differential activities are not clear but may include routes and doses of administration, as well as variable host reactivity to the agent. In this study, we have used killed BCG administered intravenously to produce chronic granulomatous inflammation (CGI) in the lungs and spleen of inbred mice. We report that strains which develop CGI were usually anergic, as evaluated by the development of delayed hypersensitivity (DH) to sheep erythrocytes (SRBC). Studies on the genetics of BCG-induced anergy indicated that it was unigenic, recessive and linked (approximately 28 recombination units) to the immunoglobulin heavy-chain allotype (Igh). There was no influence by genes linked to the major histocompatibility complex. The study indicates that anergy associated with CGI is under genetic control, which may explain the variability of anergy in patients with granulomatous diseases. The implication of linkage to the Igh complex is not clear, but it may be associated with VH receptors on T lymphocytes, which in turn act on macrophages to mediate suppression.  相似文献   

17.
Breakdown of self-tolerance in anergic B lymphocytes.   总被引:19,自引:0,他引:19  
C C Goodnow  R Brink  E Adams 《Nature》1991,352(6335):532-536
Production of autoantibodies, which characterizes most autoimmune diseases, is normally avoided by active elimination or functional inactivation (anergy) of B and T lymphocytes bearing receptors for self antigens. The mechanisms leading to the escape of self-reactive clones from these normal tolerance mechanisms in autoimmune diseases nevertheless remain obscure. Here, we demonstrate that clonal anergy in B lymphocytes is a reversible process, and that silenced self-reactive B cells can be reactivated under particular conditions to give rise to vigorous antibody responses. Reactivation of anergic lymphocytes may explain many examples of transient autoimmune reactions in normal individuals, and may under pathological conditions be important in the development of chronic autoimmune disease.  相似文献   

18.
B lymphocytes originate from pluripotential haematopoietic stem cells and differentiate into immunoglobulin (Ig)-producing cells. B-cell lineage differentiation is accompanied by two types of immunoglobulin gene rearrangements--rearrangement of V, D and J gene segments to create a functional V gene and rearrangement of CH genes for heavy-chain switching. These results, however, have been obtained mainly by analysis of immunoglobulin gene organization of myeloma cells. Baltimore and his colleagues have established Abelson murine leukaemia virus (A-MuLV)-transformed cell lines and found a few lines capable of carrying out kappa-gene rearrangement or undergoing isotype switching during in vitro culture. To study early B-cell lineage differentiation events, we have now also established A-MuLV-transformed cell lines which are capable of differentiating from mu- to mu+ and of undergoing continuing rearrangement of heavy-chain genes in culture. Analysis of immunoglobulin gene organization of these transformed cells revealed that mu- cells have already undergone DNA rearrangements involving JH segments but an additional rearrangement of JH segments is required for initiation of mu-chain synthesis. Southern blot analysis of the DNA and two-dimensional gel electrophoresis of intracytoplasmic mu-chain show that mu-chain diversity with respect to antigen specificity may be generated during this second rearrangement process. As no rearrangement of light-chain genes takes place in these cells, this implies that light-chain gene rearrangement requires some further change, or a different enzyme.  相似文献   

19.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   

20.
Human lysozyme is a 130-aa (amino acid) alkaline polypeptide, and has both anti-bacterial and anti-viral properties which make it an important component of human natural immunity system. As a first step toward the ultimate goal of improving the anti-bacterial properties of bovine and ovine milk, a transgenic mouse that contains the genomic DNA sequence of the human lysozme gene has been generated for the first time. From 83 mice generated by microinjection, a total of 6 positive transgenic mice were identified by PCR and Southern blot. F1 mice positive for transgene in lines were also detected by PCR. This shows that transgene could be transmitted from founder transgenic mice to their offspring. Recombinant human lysozyme (rHlys) was found in the whey of 3 female positive transgenic mice by Western blot. The highest concentration of rHlys for transgenic mice was 0.2mg/mL. The antibacterial activity of the whey for transgenic mice was highly enhanced up to 0.4 times as much as that of human, while that of non-transgenic mouse was very low. Although the lysozyme activity of transgenic mice is still lower than that of human, the rHlys exhibits the same specific activity as that of human lysozyme. It provides a strong basis for further studies into the possible application of rHlys express in mammary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号