首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
设L是特征为零的代数封闭域F上的有限维单李代数.如果f:L→L为可逆映射,且满足[f(x),f(y )]=[x,y],对任意的x,y∈L,则称f是L上保强交换性的非线性可逆映射.证明L上保强交换性的可逆映射只能是恒等映射或负恒等映射.若映射δ:L→L满足[δ(x),y]+ [x,δ(y)]=0,对任意的x,y∈L,则称δ为L上的非线性强积零导子.证明了单李代数L上非线性强积零导子只能是零映射.  相似文献   

2.
设F为域且char F≠2,L为域F上李代数.L上的一个映射φ:L→L称为非线性强交换映射,如果对任意的x,y∈L,有[φ(x),y]=[x,φ(y)].当P为一般线性李代数gl(n,F)(n≥2)的抛物子代数时,证明了P上映射φ为非线性强交换映射当且仅当φ是P上数乘映射与中心映射之和;又当P是有限维单李代数L的抛物子代数时,证明了P上映射φ是非线性强交换映射当且仅当φ是P上数乘映射.  相似文献   

3.
设F是特征为零的域,gl(n,F)为域F上的一般线性李代数,Tn为域F上全体n×n阶上三角矩阵李代数,称gl(n,F)中包含Tn的所有子代数为gl(n,F)的抛物子代数.决定出gl(n,F)上的任意标准抛物子代数P的形式,证明了任意抛物子代数P上的映射φ是保李积的非线性可逆映射当且仅当存在可逆矩阵T∈P,映射x:P→F...  相似文献   

4.
在关联代数上的中心化子及Lie中心化子的基础上,通过代数组合的方法探究关联代数上的非线性中心化子及非线性Lie中心化子的性质。设(X,≤)是一个有限预序集, R是含2–扭自由的单位元的交换环。设I(X,R)是定义在R上的关于X的关联代数,且φ、φ:I(X,R)→I(X,R)是非线性映射。若φ是中心化子,证明了非线性映射φ为可加中心化子及若φ是非线性Lie中心化子,证明了存在a∈Z(I(X,R))及τ:I(X,R)→Z(I(X,R)),使得对任意x∈I(X,R)有φ(x)=ax+τ(x),其中τ作用于交换子[x, y]为零。  相似文献   

5.
设R是素环,I是R的非零理想,d是I上非零广义导子,若d([x,y])=0,对任意x,y∈I,那么R是交换的;若d([x,y])=[x,y],对任意x,y∈I,那么d是I上的恒等映射;若d在I上是同态(反同态),则d是I上的恒等映射(R是交换的).  相似文献   

6.
设A是一个有单位元1的代数.称映射f:A→A是一个弱可加映射,如果满足对任意的x,y∈A,存在t_(x,y)S_(x,y)∈F使得f(x+y)=t_(x,y)f(x)+s_(x,y)f(y)成立.本文证明了在一定的假设下,如果f是交换映射,则存在λ_0(x)∈A和一个从A到Z(A)的映射λ_1,使得对所有的x∈A有f(x)=λ_0(x)x+λ_1(x).作为应用,刻画了M_n(F)上一类交换的弱可加映射.  相似文献   

7.
设M是Hilbert空间H上维数大于1的因子von Neumann代数,用代数分解方法证明了:如果非线性映射δ:M→M满足对任意的A,B,C∈M且ABC=0,有δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)],则存在可加导子d:M→M,使得对任意的A∈M,有δ(A)=d(A)+τ(A)I,其中τ:M→瓘I是一个非线性映射,满足对任意的A,B,C∈M且ABC=0时,有τ([[A,B],C])=0.  相似文献   

8.
设T=Tri(A,M,B)是三角代数,{δn}n∈N:T→T是一列映射(没有可加性的假设,其中δ0是恒等映射).若对任意的U,V∈T且U与V中至少有一个是幂等元,有δn(UV)=∑i+j=nδi(U)δj(V),则{δn}n∈N是T上可加的高阶导子.  相似文献   

9.
设U是一个三角代数,δ是U上的一个映射(无可加性假设),σ是U上的一个自同构.利用代数分解方法,证明了如果对任意的x,y∈U,有δ(xy)=δ(x)y+σ(x)δ(y),则δ是一个可加的σ-导子.  相似文献   

10.
设T=Tri(A,M,B)为三角代数,δ:T→T是一个映射(没有可加性的假设).利用代数分解的方法证明了:如果对任意的A,B∈T,且A与B至少有一个是幂等元,有δ(AB)=δ(A)B+Aδ(B),则δ是一个可加导子.并得到了上三角矩阵代数和套代数上此类局部可导非线性映射的具体形式.  相似文献   

11.
设U=Tri(A,M,B)是三角代数,δ,τ为U→U上的两个映射(无可加性或线性假设).利用矩阵分块的方法证明了:如果对任意的a,b∈U,有δ([a,b])=[δ(a),b]+[a,τ(b)],则τ=σ+L,δ=θ+f,其中:σ:U→U是可加导子;L:U→Z(U)是模可加的中心值映射;θ:U→U是关于σ的可加广义导子;f:U→Z(U)是中心值映射,且f([a,b])=0.  相似文献   

12.
设R是一个环,F:R→R是一个映射.如果对所有的x∈R,有[F(x),x]=0成立,则称F是R上的交换映射.文章的主要结论为:设R是特征不为2的素环.如果存在一个非零广义导子:δR→R,使得映射x→[δ(x),x]在R上是可变换的且δ(I)∈Z(R),则δ在R上是可交换的.  相似文献   

13.
下面先给出 BCK-代数中的几个定义   定义 1设〈 X;*, 0〉是一个 BCK-代数, X的一个非空子集 A被称为一个理想,如果它满足   (1)0∈ A  (2)x∈ A, y* x∈ A, y∈ A(以后表示可推出 )  定义 2设和〈 Y;* 1,θ〉是两个 BCK-代数,如果存在一个映射, f∶ X→ Y,使得对于任意的 x, y∈ X,有 f(x* y)=f(x)* 1f(y),则称 f为 X到 Y的一个同态映射,且称 X和 Y是同态的,记 X~ Y  定义 3设 f是两个 BCK-代数到的一个同态,称集合 Ker(f)={x∈ X;f(x)=θ }为同态 f的核。 在 [1]中已有如下结论 …  相似文献   

14.
设U是一个三角代数,Ω是U上平方零元的集合,φ:U×U→U是U上的一个映射(在每个变量上都没可加假设).若对任意的x,y,z∈U且[x,y],[y,z]∈Ω分别有φ(xy,z)=φ(x,z)y+xφ(y,z)和φ(x,yz)=φ(x,y)z+yφ(x,z),则φ是U上的一个双导子.  相似文献   

15.
设U是一个2-无挠的三角代数,Ω={x∈U:x~2=0},■是U上一列映射(无可加性假设).用代数分解方法证明:若对任意的■,x,y,z∈U且xyz∈Ω,有■,则D是一个高阶导子.  相似文献   

16.
研究子空间格代数Alg ■上的局部Lie导子,其中■是Banach空间X上子空间格且(0)+=∧{M∈:M■(0)}≠(0).利用子空间格代数Alg ■上Lie导子的已有结构,证明了如果δ:Alg ■→B(X)是局部Lie导子,则存在两线性映射T:X~*→X~*,S:()++→X~(**),使得对任意x∈(0)_+,f∈X~*有Sx(f)=-xT(f),其中()_+是(0)_+在X~(**)中的典型映射像.  相似文献   

17.
设g是X_l~(1)型仿射Kac-Moody代数,X_l为A_l,D_l或E_l型,l≥3,n_+是g的正部分.n_+上的一个映射φ:n_+→n_+称为交换映射,如果对任意的x∈n_+,有[φ(x),x]=0.证明了n+上的导子是交换映射当且仅当它是零映射.  相似文献   

18.
保持两个等价关系的夹心半群的格林关系和正则性   总被引:3,自引:2,他引:1  
设X,Y为非空集合,E,F分别为X,Y上的等价关系.称映射f:X→Y是EF-保持的,如果对任意x,y∈X,(x,y)∈E蕴涵(f(x),f(y))∈F.设T(XE,YF,θ)表示所有EF-保持的映射的集合,θ:Y→X是一个FE-保持的映射,对任意f,g∈T(XE,YF;θ),定义fog=fθg,则T(XE,YF;θ)在运算"o"下构成一个半群,称为保持等价关系EF的夹心半群,θ称为夹心映射.本文讨论了保持等价关系EF的夹心半群T(XE,YF;θ)上的格林关系以及正则元的特征.  相似文献   

19.
李代数g上的映射φ称为可交换,如果对任意的x∈g,有[φ(x),x]=0.设g是特征为0的代数封闭域F上可对称化Kac-Moody代数,b+是g的标准Borel子代数.决定出g和b+的所有交换自同构与交换导子的具体形式.  相似文献   

20.
蕴涵格、弱Ro代数与正则剩余格   总被引:2,自引:0,他引:2  
讨论了蕴涵格、弱Ro代数以及正则剩余格之间的相互关系,证明了以下结论:(1) 弱Ro代数既是蕴涵格又是正则剩余格;(2) 蕴涵格L是正则剩余格(弱Ro代数)的充分必要条件是:对任意x,y,z∈L,x→(y→z)=y→(x→z);(3) 正则剩余格L是蕴涵格(弱Ro代数)的充分必要条件是:对任意x,y,z∈L,x→y∨z=(x→y)∨(x→z).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号